
Semi-automatic Generation of Recommendation
Processes and their GUIs

Hermann Kaindl†, Elmar P. Wach‡, Ada Okoli♦, Roman Popp†, Ralph Hoch§, Werner Gaulke$, Tim Hussein$

†Vienna University of Technology, Austria, kaindl@ict.tuwien.ac.at, roman.popp@tuwien.ac.at
‡STI Innsbruck, Austria, elmar.wach@sti2.at

♦Smart Information Systems, Austria, a.okoli@smart-infosys.at
§Dornbirn, Austria, hoch.ralph@gmail.com∗

$University of Duisburg-Essen, Germany, werner.gaulke@uni-due.de, tim.hussein@uni-due.de

ABSTRACT
Creating and optimizing content- and dialogue-based recom-
mendation processes and their GUIs (graphical user inter-
faces) manually is expensive and slow. Changes in the en-
vironment may also be found too late or even be overlooked
by humans. We show how to generate such processes and
their GUIs semi-automatically by using knowledge derived
from unstructured data such as customer feedback on prod-
ucts on the Web. Our approach covers the whole lifecycle
from knowledge discovery through text mining techniques to
the use of this knowledge for semi-automatic generation of
recommendation processes and their user interfaces as well as
their comparison in real-world use within the e-commerce do-
main through A/B-variant tests. These tests indicate that our
approach can lead to competitive results in terms of click-out
rate, while requiring much less manual effort.

ACM Classification Keywords
H.5.2 User Interfaces: Graphical user interfaces (GUI)

General Terms
Design

Author Keywords
E-commerce; recommender systems; dialogue-based
recommenders; model-based UI generation; ontologies.

INTRODUCTION
Dialogue-based recommendation processes have proven to be
helpful tools in the area of e-commerce. Like content-based
recommenders, they are based on explicit information about
the items. According to [14], dialogue-based recommenders
are especially helpful when users are looking for complex
items that they do not buy very frequently (cars or computers,
for instance). Manually creating and continuously optimiz-
ing such processes and their GUIs (graphical user interfaces),
however, is laborious and error-prone.
∗Ralph Hoch did this work while being with the Institute of Com-
puter Technology (ICT) of the Vienna University of Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’13, March 19–22, 2013, Santa Monica, CA, USA.
Copyright 2013 ACM 978-1-4503-1965-2/13/03...$15.00.

In order to reduce the costs of creating a content- and
dialogue-based recommendation process and its GUI for real-
world use, we strived for automation. The recommender life-
cycle proposed in this article makes use of knowledge sources
on related products on the Web in order to generate recom-
mendation processes semi-automatically.

To illustrate the approach, we use a running example based
on a given product domain ontology (PDO). We use ontolo-
gies, since such formal representations can be more easily
processed automatically than conventional, usually less struc-
tured product descriptions. The given PDO for mobile phones
contains 74 properties representing various mobile phone fea-
tures such as “face detection” or “operating system”. These
properties are referenced in the recommender dialogue to ask
the end-users about their preferences (for instance, “Which
operating system do you prefer?”).

Within the automated recommender lifecycle, customer feed-
back on the products that are supposed to be recommended
can be found as unstructured text on the Web. We use text
mining techniques in order to adapt the PDO, including its an-
notations like recommendation priorities. Subsequently, the
adapted PDO is used to generate a high-level abstraction of a
recommendation process. Using domain-specific heuristics,
this process is operationalized in all its details, including a
GUI for its actual use by customers. We consider this an in-
telligent user interface supporting the customer in the course
of browsing and potentially buying products. For instance,
this approach ranked features higher that were related to the
mobile phone display and the operating systems, while they
were neglected or ranked differently in a human-generated
version.

We deployed such a semi-automatically generated process in
a real-world setting and compared its results to a process that
was previously created manually. We use A/B-variant tests
for this comparison. Data from real-world deployment of this
new and automated approach provide empirical evidence of
its usefulness. Deployed at a large e-commerce platform and
tested with about 1,500 different customers, this approach in-
creased the rate of customers who followed the recommenda-
tions by 14%. In addition to that, it reduced the manual adap-
tation work to very roughly half as much time. We regard the
proposed recommender lifecycle as the major contribution of
this paper, combining several mechanisms into an integrated
approach that has proven to increase the quality of the recom-
mendations while reducing manual effort.

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

85

The remainder of this paper is organized in the following
manner. After discussing the state of the art, we introduce the
recommender lifecycle, describing its components in detail.
After that, we present an evaluation of this approach based
on data obtained from real-world deployment. We conclude
this paper by discussing the approach in a broader context.

STATE OF THE ART
To the best of our knowledge, no previous approach can di-
rectly be compared to the recommendation lifecycle proposed
in this paper. However, several solutions for certain aspects of
it have been proposed in the past. Dialogue- or critique-based
recommenders have been in the focus of research for more
than a decade [3, 18, 27]. In e-commerce, they have proven to
be a good choice for guiding users through a variety of alter-
natives. While the user has a rather passive role in frequently
used algorithms such as collaborative filtering [11], dialogue-
based recommenders offer (and require) a higher degree of
interaction between user and system. As a result, users tend
to trust dialogue-driven recommendations more compared to
recommendations generated by the system without interac-
tion [30]. However, it is not trivial to select and order the
questions that are supposed to be used in such a dialogue [5].

Explicit customer feedback to recommendations is rather
scarce [15], so sources such as customer reviews or blog en-
tries should be taken into consideration for revising the di-
alogue models according to recent trends or customer opin-
ions. Data mining techniques have been proven to work well
in the field of recommender systems [2]. They have, for
instance, been used to identify the most salient features of
products [12], to approximate user ratings [4], and to use
this information directly during the recommendation gener-
ation process [16, 24, 32]. Mining and sentiment analysis
techniques can be especially helpful, if collaborative filtering
techniques do not yield meaningful recommendations due to
sparsity problems [31].

In our case, ontologies build the foundation for the recom-
mendations. Middleton et al. have introduced systems that
use ontologies as a representation of user interests [19]. On-
tological user profiling in recommender systems is also used
by Sieg et al. [28]. Systems that use semantic product data
[10] have been proposed as well. Hussein and Ziegler use
product ontologies in combination with context ontologies for
generating context-aware recommendations [13].

Mahmood and Ricci describe a conversational recommenda-
tion process as a sequential decision problem and model it
as a Markov Decision Process [17]. A model of the user be-
havior is learned and used to acquire the adaptive strategy
through Reinforcement Learning techniques. In this context,
the system learns an optimal strategy by observing the effects
of its actions on the final outcome of the recommendation
sessions. Like in our approach, Aciar et al. use text mining
techniques to analyze customer feedback [1]. However, their
solution is not intended to be used in combination with con-
versational recommenders and does not provide a lifecycle
like ours.

Website morphing as proposed by Hauser et al. [9] uses

Bayesian Inference and Dynamic Programming to adapt lay-
out and presentation of a Website to the user’s preferred way
of processing information. It focuses on how content is pre-
sented, while our approach creates a process and its content.
In principle, these two approaches are complementary and
could be combined.

THE PROPOSED RECOMMENDER LIFECYCLE
Figure 1 provides an overview of the proposed recommender
lifecycle, illustrating the flow between the different steps. Ini-
tially, feedback is crawled and analyzed from customer re-
views. Based on the results, the Product Domain Ontology
(PDO) is updated, for instance by adding properties reflect-
ing certain features that recently emerged for a type of prod-
uct. The PDO then builds the foundation for discourse-based
models, which in turn are used to generate concrete recom-
mendation processes. Finally, the performance results of new
recommendation processes are compared to those of existing
ones using A/B tests. The dotted arrow indicates that the test
results could be used to automatically adjust the PDOs again.
This feature, however, is outside the scope of this paper.

Feedback from
customer reviews

Evolution of product
domain ontology (PDO)

Generation of discourse-
based model

Generation of
operationalized

recommendation process

Comparison of
recommendation

processes

Figure 1. Overview of the recommender lifecycle.

Customer feedback on products
Discussing and reviewing products has become common in
the modern Web. Users can express their opinion about a
product on various sites. For example, many retailers such as
amazon.com offer rating and feedback mechanisms for prod-
ucts offered. The approach presented in this paper analyzes
customer feedback on products of a given product domain to
identify the importance of certain features.

The underlying assumption for our approach is, that impor-
tant features are discussed more often than unimportant ones.
Hence, we count the number of appearances of features in
the reviews. We do not take into account whether the feature
is mentioned in a positive or negative way. We assume that
the opinion about a feature is tied to the specific product and
cannot be applied to the whole domain but the fact that the
feature itself was mentioned makes it important.

Analysis of customer reviews is a major goal in the research
of text- and opinion mining and several approaches are in-
vestigated [20]. Figure 2 illustrates the most important steps
for processing customer feedback. The architecture is based
on the approach for review analysis proposed by Hu and Liu
[12] and was extended to support multiple feature detection
techniques.

First, reviews are crawled from previously specified online
sources. They are stored along with meta-data such as the
respective publication date. Then, text mining algorithms are
used to identify features mentioned in the reviews. We call
these features candidates. These candidates are compared to

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

86

Crawl reviews Identify features Generate results

4/5 Good Phone
It has a crisp and
responsive touch-

screen. It ships
with the latest

version of Android.

4/5 Good Phone
It has a crisp and
responsive touch-

screen. It ships
with the latest

version of Android.

Feedback

touchscreen identified

Android

380
343

3393

Figure 2. Steps necessary for feedback processing.

the features currently included in the PDO. Both candidates
and existing features are counted and stored in a semantic
representation for processing them later in the lifecycle.

The current implementation integrates supervised, unsuper-
vised and probability-based algorithms for feature detection.
Multiple Feature mining algorithms are used to even out
shortcomings of the respective approaches. For example,
the supervised associate rule mining algorithm proposed by
Popescu and Etzioni [22] is used to detect features men-
tioned explicitly or implicitly. For each product domain,
training data is, however, necessary. The unsupervised ap-
proach based on the ideas of Hu and Liu [12] does not need
training data but is limited to features mentioned explicitly. It
relies on the assumption that most of the features appear as
nouns or in noun phrases. The probability-based word fre-
quency algorithm proposed by Scaffidi et al. [26] uses a sta-
tistical approach to calculate probabilities for each mentioned
noun in order to identify uncommon phrases as feature can-
didates.

After that, the feature lists obtained from these algorithms
are compared to the features currently specified in the PDO,
using the Levenshtein Distance algorithm for matching pur-
poses. Candidates that could not be matched to features in the
PDO are stored in order to be reviewed manually.

These steps are processed asynchronously. A scheduler
crawls and analyzes new reviews on a regular basis.

Product domain ontology (PDO)
A PDO is the formal, explicit specification of a shared con-
ceptualization of products and is specified in OWL DL1. In
our case, the PDO includes both classes (concepts) and indi-
viduals as well as annotations (for example on priorities for
the respective recommendation processes). The PDO should
always contain the most important features for a certain prod-
uct type. Thus, the PDO is adjusted regularly to reflect the
results of the mining and analysis step.

Generally, ontologies may need to change if (i) there is an er-
ror in a prior version, (ii) a new way of modeling the domain
is preferred, or (iii) a new terminology has been created2. In
this research, customer feedback leads to reason (ii). The
main research question is: How can feedback be utilized to
facilitate PDO evolution with little or no human effort?

To answer the question, our recommender has been specified
according to the adaptation strategy proposed in [29], and
a feedback cycle has been established in which the feature
1OWL DL provides sufficient expressivity and is still decidable
2www.w3.org/TR/webont-req/#goal-evolution

relevance is fed back. This feedback metric is transformed
into the Success Trend ST. The PDO is modeled according to
GoodRelations3 and evolved within that upper ontology. An
excerpt of the PDO for mobile phones and related GoodRela-
tions entities is depicted in Figure 3.

gr:ProductOrService
Domain

gr:QuantitativeValue
Range

rdf4ec:DomainSegment

owl:Thing
(root class)

rdf4ec:belongsToDomainSegment

sub-class sub-class sub-class

PDO

sub-class gr:quantitativeProductOrService

Individuals
(instances of

rdf4ec:DomainSegment)

Range
rdfs:Literal

gr:datatypeProductOrServiceProperty

Examples of sub-
properties (domain:
PDO):
- faceDetection
- HDMI
- video function

Examples of sub-
properties:
- opticalZoomFactor
- pictureResolution
- weight

Examples:
- Display
- Features
- GeneralCharacteristics
- LensFeatures
- Ports
- WeightAndDimensions

Figure 3. PDO ‘MobilePhone’ and related GoodRelations entities (ex-
cerpt). Solid lines indicate class relations, while dashed lines represent
property relations.

The root class is owl:Thing, which has several sub-
classes. Among them are GoodRelations classes4 such
as gr:ProductOrService or gr:QuantitativeValue. In-
stances of the class rdf4ec:DomainSegment5 represent
groups of properties used in the respective product domain
such as WeightAndDimensions. The PDO for the running ex-
ample has 11 DomainSegments and is modeled as a sub-class
of the class gr:ProductOrService.

The features of a product are modeled as properties (for in-
stance, the weight of a mobile phone). In OWL, a property
maps elements of a certain domain onto elements of a certain
range. Object properties map objects or classes onto other
objects or classes, whereas the range for datatype properties
are literals such as Boolean or integer values, for instance.

In our PDO, the class gr:ProductOrService is the domain
for all properties. In case the feature is modeled as an object
property (gr:quantitativeProductOrServiceProperty),
the range is the class gr:QuantitativeValue.
Examples of object properties are depth,
height, and weight which are sub-properties of
gr:quantitativeProductOrServiceProperty. In
case the feature is modeled as a datatype property
(gr:datatypeProductOrServiceProperty), the range is a
literal (rdfs:Literal). Examples of datatype properties are
android, keyboard, and touchscreen which are sub-properties
of the property gr:datatypeProductOrServiceProperty
and have as domain the class MobilePhone, which is the
sub-class of the class gr:ProductOrService. Each property
is correlated with one individual via the annotation property
rdf4ec:belongsToDomainSegment.

3www.purl.org/goodrelations
4Those entities start with the namespace gr:
5rdf4ec is a custom namespace.

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

87

Additionally, the property rdf4ec:priority represents an-
notations on the relevance of product features for the related
recommendation processes. The domain of this annotation
property is the class owl:Thing and the range is specified
through the datatype integer with values [0. . . +100]. It
indicates the importance of a property and is used for pro-
cessing the explicit customer feedback. A higher value of
rdf4ec:priority means that the question about this feature
is more important and, hence, be asked earlier in the dialogue.

The explicit customer feedback gathers information about
products based on PDO extractions and is thus PDO- and
property-based. The corresponding metric is “Feature rele-
vance”, whose RDF includes the property (i.e., feature name)
and its relevance based on the count of appearances on the
Web over a period of time. It is defined as Feat(t) with the
range [0 . . . [. Feat(t) is converted into ST , which has the
range [0 . . .+ 100], by calculating the new relevance of each
property with the relative frequencies of the properties con-
tained in the customer feedback. First, the maximum and
minimum values of the properties as well as the sum of the
values of all properties are determined and the interval for 100
classes is calculated. Second, the relative frequencies of the
properties are calculated. Third, after having determined the
classes and their bounds, the corresponding properties (i.e.,
the relative frequency of the property is within the bounds of
the respective class) as well as the respective relevance are
assigned to the classes. The new relevance is represented as
given above (i.e., as annotation property rdf4ec:priority).

The feature relevance of the initial PDO was manually set to
the same value for each property (i.e., all 74 properties had a
priority of 30 as a heuristic guess, since only properties with
high property values were used to generate the dialogues).
Also, the triggering result of the A/B-variant test was man-
ually designed. Subsequently, the customer feedback from
the explicit customer feedback channel was retrieved, and
Feat(t) values for twenty properties were delivered (e.g.,
the property “android” describing the operating system ap-
peared 343 times in the reviews). “keyboard” had the maxi-
mum Feat(t), with a value of 500; “integratedRadio”, how-
ever, was named only once. In total, all identified properties
were discussed 3,393 times. The processing of the explicit
feedback followed the three steps described above and finally
led to the new priorities. Table 1 lists the development of
rdf4ec:priority of the product features.

Table 1. Relevance changes of selected properties.

Property ST (t0) Feat(t1) ST (t1)
(rdf4ec:priority) (rdf4ec:priority)

keyboard 30 500 100
touchscreen 30 380 77
android 30 343 69
flash 30 248 50
displaySizeInch 30 160 33
resolutionText 30 99 21
symbian 30 33 7
operatingSystem 30 23 6
integratedRadio 30 1 1

For properties that do not appear in the customer feedback, a
specific function, the Decay Function, has been developed,
calculating the priority for each of those product features.

This function proposes a slight decrease of the relevance of
a product feature (i.e., priority) in the first time period and a
quicker decay later. This is due to the fact that the PDO al-
ready contains the priorities of product features derived from
customer feedback earlier. Missing explicit customer feed-
back on a product feature should neither lead to its abolition
nor to a strong decrease of its priority in a short time period.
The Decay Function further proposes that the priority of a
product feature will drop to zero (i.e., decay) after a certain
period of time (e.g., in case a product feature has not been
discussed for one year), which can be manually specified. It
is a function: Prio(t0) ∈ N → Prio(t) ∈ N where Prio is
the priority of a product feature, t0 is the point of time of the
precedent customer feedback processing, and t is the point of
time of the current customer feedback processing.

Prio(t) = Prio(t0) + 1−Rep ∗ e
t∗ln Prio(t0)+1

Rep
Decay ∈ N

where Prio(t) is the priority of a product feature at time t (with
0.5 being rounded up), which is the point of time of the cur-
rent customer feedback processing, t is the number of days
from an initial date, Prio(t0) is the priority of a product fea-
ture at time t0, which is the point of time of the precedent
customer feedback processing6, Rep is the representativeness
of not discussing a product feature, which reduces the priority
of a product feature the more reliable the absence of a discus-
sion is (the default value is +1), Decay is the number of days
to a priority of zero (the default value is 365 days).

For the running example, the customer feedback processing
was on October 28, 2011. The initial date is defined to be
September 1, 2011 (i.e., the deployment of the prototype).
Hence, t is 57 (i.e., 57 full days after September 1). With
the default values for Rep and Decay, the new priorities are
calculated to be 29.29, thus the initial priorities are decreased
from 30 to 29.7 Examples of properties that got this prior-
ity are bluetooth, GPS, integratedCamera, mp3Player, video-
Function, and WLAN.

After the feedback processing, a new PDO version is created.
With the process described, the PDO adapts to the feedback
automatically without any explicit, direct intervention from a
human.

Recommendation processes as discourse-based models
From such an annotated PDO, we automatically generate a
recommendation process on a conceptual level first. It is rep-
resented as a discourse-based model (for the background and
a definition of such models see, for instance, [6, 23]). The
Discourse Model, as its major part, essentially consists of
questions and answers about those items annotated as impor-
tant in the PDO, and their sequence.

Figure 4 shows an excerpt of such a Discourse Model. The
related questions and answers are modeled as so-called Adja-
cency Pairs (shown as diamonds), with opening and closing
Communicative Acts (shown as rounded rectangles). These

6A property that has never received customer feedback gets the
value it had on the initial date
729.29 is rounded off to the next integer, which is 29

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

88

Adjacency Pairs are related to so-called Discourse Rela-
tions. In a model of such a recommendation process, only
three types of Discourse Relations are used. The first one,
Sequence, is shown as hexagon (since it is more specifically
a Procedural Construct), the second, Joint, and the third one,
Background, are shown as rectangles (since they are Rhetor-
ical Relations). Because such a model can have many Joint
relations and many Question-Answer Pairs, only one such el-
ement is shown each in order to visualize the pattern, which
is repeated.

Sequence

Background

Page 1

closedQuestion
producer

Informing
manufacturer of device

Answer

nextProperty ...

nextPage ...Joint

Page 2

openingopening closing

Figure 4. Excerpt of Discourse Model of recommendation process.

The automatic generation of such a model comprises two
steps. First, our model-transformation approach transforms
the instances of the PDO classes and their concrete datatypes
and object property values into a model of the content of the
communication (the Domain-of-Discourse model). Second, a
set of model-transformation rules matches parts of the PDO
(including its individuals) and transforms them automatically
into corresponding parts of a Discourse Model. This step also
defines the content of the Communicative Acts, so that the
Discourse Model refers to the Domain-of-Discourse Model.

In the first step, all properties of the PDO are analyzed. Each
property is stored as a datatype in the Domain-of-Discourse
Model. For most of the datatypes, the values used by the indi-
viduals are added to the datatype. In case of numeric proper-
ties, only the minimum and maximum values are stored in the
Domain-of-Discourse Model. All properties that are set on a
minimum of 70% of the individuals are taken into account for
further calculations in the second step, since it was observed
in real-world practice over time that users trust the results
more, if an answer leads to a sufficient number of products.
The other properties are not used, since they do not seem to
be relevant for a sufficient number of individuals.

In the second step, a Discourse Model is created. For each
used property a question-answer pair is created according to
a predefined template. Such a template consists of a Question
and a corresponding Answer Communicative Act. These two

Communicative Acts are connected with an Adjacency Pair.
The description property of the transformed property is added
to the defined Discourse-Model part with a Background re-
lation connecting the Question-Answer Adjacency Pair with
an Informing Communicative Act, containing the description.
It is also possible that some properties of a domain segment
are combined into a single question. This combination is ap-
plied, if there is more than one property of type Boolean. In
our running example, the properties of the domain segment
Operating Systems are combined. Several properties like an-
droid, symbian, windowsMobile have been combined to form
a single question.

The generated parts of the Discourse Model are then sorted
according to previously specified heuristics. An example of
such a heuristic is, that the question for the producer prop-
erty always has to be the first one. Another heuristic is, that
questions for properties with a high priority are asked before
properties with a lower priority. This sorted list is then di-
vided into more logical units (eventually becoming pages in
the resulting user interface). Each of these logical units has
a configurable value of questions. In the Discourse Model,
each of these logic units is represented with a Joint Relation,
connecting the respective parts. The generated Joint Rela-
tions are connected then with a Sequence Relation specifying
their order.

Operationalized recommendation process and its UI
Finally, the discourse-based models can be used to generate
so-called concrete user interfaces (CUI) as depicted in Fig-
ure 5 as well as the actual recommendation processes that are
eventually used on the Website. The CUI comprises both the
structure of the process and the course of events, which de-
fines how end-users navigate through the process.

Figure 5. Advisor Model example at the CUI level.

Several heuristics are used for refining the discourse-based
models and for transforming elements into concrete represen-

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

89

tations. The following list illustrates selected specifications of
the question element:

• String questions have several predefined answer sets that
are defined in the Domain-of-Discourse Model and refer to
a specific property. The “Producer” property in Figure 5
represents such a question, as each answer (a brand in this
case) is only related to one property.
• Numeric questions referring to specific properties enable to

define a value range such as “Display Size Cm”. Bound-
ary values and step-width are defined in the Domain-of-
Discourse Model.

Furthermore, a specific representation of each question type is
defined. A numeric question, for example, can be represented
by a single (minimum or maximum value) or double slider
(range of values). In Figure 5 for instance, “Display Size Cm”
represents a numeric question. Slider values, such as start and
end value, are based on the actual values of the products and
the specific representation is predefined in the Domain-Of-
Discourse Model. Similar representations apply to the other
question types. In addition to that, several other heuristics
support the model transformation, covering for instance:

• text-patterns for questions,
• definition of background information,
• restricted answers per question,
• restricted answer selection per question, etc.

The resulting model comprises the logical layers used during
a recommendation process. This means that a root element
“process” serves as a starting point, containing an ordered set
of pages. These pages are used as containers for question-
answer pairs, where each question can have multiple related
answers. Answers themselves can be restricted and special
answer elements can be used to show/hide additional answers
(“more”/“less” switch). Moreover, questions are based on
product properties and have varying characteristics, which are
rendered differently in the final user interface. Figure 6 illus-
trates an example with two different question types and their
respective representations.

Figure 6. Example of a generated user interface.

Enabling the user to easily navigate through the process and
to identify the important parts is mandatory. Thus, heuristics
have been put in place to support this task. We demonstrate

this behavior using the “Producer” property. Text-patterns are
used to automatically generate meaningful questions that can
easily be processed by end-users. Different approaches are
used for different question types. In case of a string ques-
tion, the text-pattern uses the property name to create a com-
prehensive question. Furthermore, the number of answers is
limited and only a fragment is shown, so that customers are
not overwhelmed by options. A special switch can be used to
show/hide additional answers (“more”/“less” switch).8

A CUI model can be seen as a 1:1 mapping for the final user
interface but still is independent from concrete implementa-
tions. One of the benefits of this method is that it facili-
tates manual adjustment of the process, if necessary, with-
out changes at the implementation level. Adjustments can
involve, for example, adding/deleting elements (pages, ques-
tions and answers) as well as changing question types. In
addition to that, it facilitates the use of different implementa-
tions or layouts for the final user interface.

Figure 5 shows how a generated recommendation process
model on the CUI-Level looks like. Technically, it is trans-
formed into an RDF representation and stored in a database,
serving as input for an already existing GUI-building com-
ponent of the participating company. From this informa-
tion on structure and content of the recommendation pro-
cess, this component generates HTML-based GUIs as the
one depicted in Figure 6. In essence, it queries the database
with the RDF representation to automatically populate flex-
ible HTML-based templates with the actual content such as
questions, answers, and texts, and configures the layout ac-
cording to the recommendation process model at hand. This
does not require any modifications of source code.

The combination of actual instance data (e.g., products of a
specific Web-shop) is done at runtime by an external engine,
enabling a more flexible UI behavior than the runtime engine
that some of the authors presented in previous publications [7,
23]. The engine used for recommendation generation allows
the user to redefine his or her criteria and also to go back in
the process.

EVALUATION
In order to measure the effectiveness of our approach, we
compared the semi-automatically generated recommendation
processes to manually created ones in a real-world retail set-
ting.

General design
The study was designed and executed together with an Aus-
trian company that offers recommendation process dialogues
as a service for retailers. A large German online retailer
(client of the Austrian company) was involved as well. The
experiment ran for 14 consecutive days and involved 2,168
uninformed online customers, who accessed the recommen-
dation processes to find suitable mobile phones.

8For the sake of simplicity, this is a simplified description of the
CUI-Model. It is possible to parameterize the model transformation,
and various heuristics are in place for different requirements.

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

90

Usually, the recommendation processes are designed manu-
ally by the company’s project managers, who have the nec-
essary domain knowledge and are skilled in designing suc-
cessful recommendation processes for different online shops.
The designed recommendation processes meet high quality
standards and thus, can serve as a baseline for the evaluation.
In addition to the effectiveness of the semi-automatically cre-
ated recommenders, we also wanted to know if our approach
can help reduce the manual effort required for the setup of
recommender processes. Although we did not execute a spe-
cific study dedicated to this question, the evaluation process
yielded some information regarding this aspect as well.

Study 1: Mobile phones
We used A/B-variant tests to measure the effectiveness of the
semi-automatically generated recommendation processes for
mobile phones. The manually created recommendation pro-
cess (A) and the semi-automatically created recommendation
process (B) were each displayed to approximately 50% of all
customers who visited the retailer’s Website within the test
period. From July 7 to October 28, 2011, we crawled and
analyzed a total of 4,044 reviews from amazon.com for the
domain of mobile phones. Based on these reviews, 3,393 fea-
tures were identified and compared to those in the existing
PDO for mobile phones. For example, the feature “touch-
screen” was mentioned 380 times, whereas “weight” was
only mentioned 165 times.

Both the semi-automatically generated and the manually
created recommendation processes order product features
according to their relevance for users. This procedure
is based on the underlying assumption that the effective-
ness of a dialogue-based recommender systems increased, if
the selectable product features were arranged by relevance.
While human domain experts applied their domain knowl-
edge to identify the relevance of product features, the semi-
automatically generated recommendation processes exploited
information from user reviews and the corresponding ranking
of the product features within the PDO, which is explained
above. At the time of the test, the manually created variants
were about 7 months old.

For the evaluation, we applied the frequently used “click-out
rate”9 in order to measure the effectiveness of the process. In
our case, it denotes the fraction of successful recommenda-
tions compared to the total amount of generated recommen-
dations. A recommendation is regarded as successful, if the
user requests details about the particular product or puts it in
his or her electronic shopping cart.

Results of Study 1
Comparing the mobile phone recommendation process (Ta-
ble 2), we found that the semi-automatically generated vari-
ant of the mobile phone recommendation process placed fea-
tures such as display or operating systems on higher positions,
while these were ranked differently or neglected by humans.

Moreover, product features that were related to Multime-
dia (Camera, Video, MP3) and Connectivity (WLAN, GPS,

9Sometimes referred to as “click-through rate.”

Table 2. Comparison of ranking of properties in mobile phone recom-
mendation processes. Left: Manually created process. Right: Semi-
automatically generated process.

• Brand
• Price
• Multimedia

– Camera
– Video
– MP3

• Connectivity
– WLAN
– GPS
– Bluetooth

• Operating System
– Android
– Symbian

• Brand
• Price
• Display

– Touch Display
– Color Display
– Display size

• Operating System
– Android
– Symbian

• Camera
• Connectivity

– WLAN
– GPS
– Bluetooth

Bluetooth) were listed on lower positions within the semi-
automatically generated variant. This suggests that these fea-
tures have lost relevance over time, unrecognized by the do-
main experts. These results reflect the relevance of proper-
ties as given in Table 1. Here, the product features touch-
screen, displaySizeInch and resolutionText (Display) and an-
droid (Operating system) received higher priorities than vide-
oFunction and mp3Player (Multimedia) or WLAN, GPS and
Bluetooth (Connectivity).

Table 3 shows the results of the A/B-variant test in which the
semi-automatically generated mobile phone recommendation
variant (B) was tested against a manually created variant (A).

Table 3. Results of A/B test with instances of the recommendation pro-
cess generated (A) manually and (B) semi-automatically. UC: unique
clients, CO: click-outs, COR: click-out rate.

Variant UC CO COR
(A) Manual 1,068 421 0.394
(B) Generated 1,100 496 0.451

The method for comparing two proportions from univariate
inferential statistics was used to calculate the results. The
null hypothesis, which states that the two samples show no
significant differences (H0 : variantA = variantB), was
tested. Additionally, the confidence interval was calculated in
order to determine a lower and upper bound of the absolute
difference between the two proportions.

A total of 1,068 unique clients used the manually created vari-
ant, which had 421 click-outs. The semi-automatic variant
had 1,100 unique clients and 496 click-outs. The comparison
of the two mobile phone variants shows, that the null hypoth-
esis (H0) should be rejected and a significant difference be-
tween the two variants exists (z = −2.67, α = 0.05). With
a confidence of 95%, the semi-automatic variant performed
between 2% and 10% better in terms of absolute proportions
than the manual variant (α = 0.05).

Study 2: Other product categories
As a follow-up study, we carried out another one that in-
cluded a total of seven product categories: Blu-ray player,
camcorder, printer, receiver, video projector, DVD player and
TFT screen. This study was set up analogously to the mobile
phone study.

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

91

Results of Study 2
Table 4 sums up the results of the second study. For each
domain the proportion was compared and tested, whether a
significant difference between the two cases exists and H0

should be rejected for α = 0.05. Additionally, the range
of the difference between the semi-automatic version and the
manually created version is given with a confidence of 95%.

Table 4. Results and comparison of A/B-variant tests of recommen-
dation process instances in 7 product categories — manually vs. semi-
automatically generated process instance. CA/B: unique clients for
cases A (manual) and B (semi-automatic),CORA/B: click-out-rates for
cases A and B, D(b, a): Difference from b to a with 95% confidence, z:
computed z-value for the two proportions. Significant values are printed
in bold. The null hypothesis is rejected for α = 0.05.

Domain CA CB CORA CORB D(b, a) z
Blu-ray pl. 806 825 0.458 0.509 0..10% -2.071
Camcorder 205 233 0.444 0.485 -5..13% -0.860
DVD player 217 239 0.415 0.213 -28..-12% 4.646
Printer 382 364 0.683 0.547 -21..-7% 3.834
Receiver 677 686 0.316 0.319 -5..5% -0.120
TFT screen 525 494 0.455 0.348 -17..-5% 3.481
Video proj. 156 173 0.429 0.462 -7..14% -0.600

The semi-automatic advisor for Blu-ray player showed a sig-
nificant difference over the manually created variant (z =
−2.071, α = 0.05) and performed between 0% and 10% bet-
ter in terms of absolute proportions (α = 0.05).

The comparison in the domains DVD player (z = 4.646, α =
0.05), printer (z = 4.646, α = 3.834) and TFT screens (z =
4.646, α = 3.481) showed significant differences between
the two proportions. In all three cases the semi-automatic
version performed worse than the corresponding manually
created one. The semi-automatic versions performed 12% to
28% (DVD player), 7% to 21% (printer) and 5% to 17% (TFT
screen) worse in terms of absolute proportions than the man-
ually created versions (α = 0.05).

The domains of camcorder (z = −0.860, α = 0.05), re-
ceiver (z = −0.120, α = 0.05) and video projector (z =
−0.600, α = 0.05) showed no significant differences be-
tween the two variants and, therefore, H0 cannot be rejected.
The performance of the semi-automatic versions varied from
-5% to 13% for camcorder, -5% to 5% for receiver and -7%
to 14% for video projector (α = 0.05).

Efficiency of the proposed approach
We interviewed several project managers of the Austrian
company mentioned earlier who are usually involved in the
(manual) setup of process recommendation systems. Depend-
ing on the complexity of the product domain, setting up or op-
timizing new advisors usually takes 1–2 days of work. This
includes analyzing product reviews and pertinent Websites to
identify the relevance that certain product features have to
customers.

This task is followed by a reassessment of current recommen-
dation processes and updating their contents according to the
findings (restructuring questions and answers, adjusting the
underlying product data structure, refining wordings and dis-
play).

With the support of the presented lifecycle to generate recom-
mendation systems automatically, the domain experts were
relieved of the manual research tasks and manual restructur-
ing of the recommendation systems, which reduced the over-
all time required to several (6–8) hours. Thus, the automated
process proposed in this paper led to a considerable reduction
of manual effort.

DISCUSSION
The results of the studies suggest that the proposed lifecycle is
capable of generating well-performing recommendation pro-
cesses for real-life use.

However, analyzing the individual structures of the generated
processes and their performance, led to the assumption that
the automated approach works well for basic recommenda-
tion process structures. The three recommendation processes
with significant negative performance (Printer, DVD Player,
TFT screen) had more complex structures, in which the ques-
tions where interrelated (e.g., selecting a question triggered
the display of an additional question), while this was not the
case for the generated recommendation processes with sig-
nificant positive performance (mobile phone, Blu-ray player).
This preliminary assumption will be evaluated in future tests.

Measuring and comparing the efforts for the manual set up of
recommendation processes to using the semi-automatic life-
cycle showed that applying the latter led to a reduction of the
manual work required by roughly half as much time.

Since our approach to generating recommender processes is
semi-automatic, the question may arise what has to be done
manually. First, the PDO was given and not automatically
created. And of course, the whole machinery such as repos-
itories, queries, transformation rules, etc. was manually de-
vised. Once it had been set-up, however, it created the rec-
ommender processes fully automatically. Still, the selection
of a new (generated) recommender process for deployment
is done manually. This may be automated as well, however,
once our closed optimization cycle will be available.

While our approach works and even results in recommen-
dation processes applicable in practice, a few related ques-
tions should be discussed. In particular, is it necessary or, at
least useful to generate a high-level model of such a process
first? Although it seems possible to generate an operational-
ized process in one shot, we argue that a two-step approach
is useful by analogy to compiler construction. Typically, in-
termediate languages are used on the way from a high-level
programming language to machine code. These provide use-
ful levels of abstraction for the compiler developers, and so
does our high-level model of recommendation processes.

Still, the question remains, whether other kinds of languages
or models could serve the same purpose, and possibly even
better. This question cannot be answered with certainty as it
stands, since our approach seems to be the very first along
these lines.

As our discourse-based models are primarily used for speci-
fying models on a high abstraction level for automated gener-
ation of user interfaces, how about the most often used ap-

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

92

proach for this purpose? Instead of discourse-based mod-
els, task-based ConcurTaskTrees [21] may be used for bridg-
ing the semantic gap between ontologies and user interfaces.
ConcurTaskTrees facilitate modeling tasks and their causal
and temporal relations. Such models are also being trans-
formed into a user interface semi-automatically. However,
we are not aware of any approach for generating ConcurTask-
Trees out of ontologies.

UsiXML [8] is an XML-based specification language for user
interface design. It allows specifying a user interface at dif-
ferent levels of abstraction, from high-level task models (like
ConcurTaskTrees) to the concrete code of a user interface.
Also for UsiXML, we are not aware of any approach for gen-
erating UsiXML models out of ontologies.

Since a recommendation process of the kind generated here
primarily consists of pairs of questions and related answers,
Communicative Acts as used in the discourse-based approach
are an excellent fit for modeling them. In contrast, tasks
would have to model questions and answers in the sense of
corresponding interactions with a specific kind of user inter-
face. So, while this would certainly be feasible, it appears to
be less appealing than our approach.

From discourse-based Communication Models, it is possible
to generate general-purpose graphical user interfaces accord-
ing to [7] and even optimized ones for devices with small
screens according to [25]. Contrasting them with the user
interfaces generated for recommendation processes as ex-
plained above, it is clear that the latter are preferable in terms
of usability.

As a matter of fact, they have been successfully used for real-
world application of these recommendation processes. They
are special-purpose, however, and their overall appearance
was predefined, while only the content has been generated
automatically for the given structure and with many given
heuristics.

CONCLUSION
In this paper, we present a novel approach for semi-
automatically generating dialogue-driven recommendation
processes based on product ontologies. By analyzing prod-
uct reviews, we were able to identify trends for product types
automatically and to adapt these product ontologies accord-
ingly. In rapidly evolving domains like mobile phones, the
automated generation led to improved recommendation dia-
logues (in terms of click-outs).

The evaluation showed that our approach can reduce the ef-
fort for creating and adjusting the recommendation processes
significantly. In addition, data from real-world deployment of
this new and automated approach provide empirical evidence
of its usefulness.

We are currently working on implementation and test of in-
cluding automated feedback for the evolution of the PDO also
from comparing recommendation processes during their de-
ployment. It will close the loop for an optimization cycle, and
this will hopefully improve the results further.

ACKNOWLEDGMENTS
This research has been carried out in the SOFAR project (No.
825061), partially funded by the Austrian FIT-IT Program of
the FFG.

REFERENCES
1. S. Aciar, D. Zhang, S. Simoff, and J. Debenham.

Recommender system based on consumer product
reviews. In WI ’06: Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web
Intelligence, pages 719–723. IEEE Computer Society,
2006.

2. X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver.
Rate it again: Increasing recommendation accuracy by
user re-rating. In RecSys ’09: Proceedings of the 3rd
ACM Conference on Recommender Systems, pages
173–180. ACM, 2009.

3. R. Burke, K. Hammond, and B. C. Young. The FindMe
approach to assisted browsing. IEEE Expert,
12(4):32–40, 1997.

4. J. Carrillo de Albornoz, L. Plaza, and P. G. A. Dı́az. A
joint model of feature mining and sentiment analysis for
product review rating. In P. Clough, C. Foley, C. Gurrin,
G. J. F. Jones, W. Kraaij, H. Lee, and V. Mudoch,
editors, Advances in Information Retrieval, volume 6611
of Lecture Notes in Computer Science, pages 55–66.
Springer, 2011.

5. M. Doyle and P. Cunningham. A dynamic approach to
reducing dialog in on-line decision guides. In EWCBR
’00: Proceedings of the 5th European Workshop on
Advances in Case-Based Reasoning, pages 49–60.
Springer, 2000.

6. J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and
E. Arnautovic. A discourse model for interaction design
based on theories of human communication. In
Extended Abstracts on Human Factors in Computing
Systems (CHI ’06), pages 754–759. ACM, 2006.

7. J. Falb, S. Kavaldjian, R. Popp, D. Raneburger,
E. Arnautovic, and H. Kaindl. Fully automatic user
interface generation from discourse models. In IUI ’09:
Proceedings of the 13th International Conference on
Intelligent User Interfaces, pages 475–476. ACM, 2009.

8. D. Faure and J. Vanderdonckt. User interface extensible
markup language. In EICS ’10: Proceedings of the 2nd
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pages 361–362. ACM, 2010.

9. J. R. Hauser, G. L. Urban, G. Liberali, and M. Braun.
Website morphing. Marketing Science, 28(2):202–223,
2009.

10. M. Hepp. Products and services ontologies: A
methodology for deriving owl ontologies from industrial
categorization standards. International Journal on
Semantic Web & Information Systems, 2(1):72–99, 2006.

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

93

11. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. Riedl. Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

12. M. Hu and B. Liu. Mining opinion features in customer
reviews. In AAAI’04: Proceedings of the 19th National
Conference on Artificial Intelligence, pages 755–760.
AAAI Press, 2004.

13. T. Hussein and J. Ziegler. Adapting web sites by
spreading activation in ontologies. In ReColl ’08:
Proceedings of the International Workshop on
Recommendation and Collaboration. ACM, 2008.

14. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender Systems: An Introduction. Cambridge
University Press, 2010.

15. G. Jawaheer, M. Szomszor, and P. Kostkova.
Characterisation of explicit feedback in an online music
recommendation service. In RecSys ’10: Proceedings of
the 4th ACM Conference on Recommender Systems,
pages 317–320. ACM, 2010.

16. A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a
needle in a haystack of reviews: Cold start context-based
hotel recommender system. In RecSys ’12: Proceedings
of the 6th ACM Conference on Recommender Systems,
pages 115–122. ACM, 2012.

17. T. Mahmood and F. Ricci. Learning and adaptivity in
interactive recommender systems. In ICEC ’07:
Proceedings of the 9th international Conference on
Electronic Commerce, pages 75–84. ACM, 2007.

18. L. McGinty and J. Reilly. On the evolution of critiquing
recommenders. In F. Ricci, L. Rokach, B. Shapira, and
P. B. Kantor, editors, Recommender Systems Handbook,
pages 419–453. Springer, 2010.

19. S. E. Middleton, N. R. Shadbolt, and D. C. de Roure.
Ontological user profiling in recommender systems.
ACM Transactions on Information Systems,
22(1):54–88, 2004.

20. B. Pang and L. Lee. Opinion mining and sentiment
analysis. Foundations and Trends in Information
Retrieval, 2(1-2):1–135, 2008.

21. F. Paternò, C. Mancini, and S. Meniconi.
ConcurTaskTrees: A diagrammatic notation for
specifying task models. In Interact ’97: Proceedings of
the IFIP TC13 6th International Conference on
Human-Computer Interaction, pages 362–369, 1997.

22. A.-M. Popescu and O. Etzioni. Extracting product
features and opinions from reviews. In HLT ’05:
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural
Language Processing, pages 339–346. ACL, 2005.

23. R. Popp and D. Raneburger. A high-level agent
interaction protocol based on a communication
ontology. In C. Huemer, T. Setzer, W. Aalst,
J. Mylopoulos, N. M. Sadeh, M. J. Shaw, and
C. Szyperski, editors, E-Commerce and Web
Technologies, volume 85 of Lecture Notes in Business
Information Processing, pages 233–245. Springer, 2011.

24. S. Raghavan, S. Gunasekar, and J. Ghosh. Review
quality aware collaborative filtering. In RecSys ’12:
Proceedings of the 6th ACM Conference on
Recommender Systems, pages 123–130. ACM, 2012.

25. D. Raneburger, R. Popp, S. Kavaldjian, H. Kaindl, and
J. Falb. Optimized GUI generation for small screens. In
H. Hussmann, G. Meixner, and D. Zuehlke, editors,
Model-Driven Development of Advanced User
Interfaces, volume 340 of Studies in Computational
Intelligence, pages 107–122. Springer, 2011.

26. C. Scaffidi, K. Bierhoff, E. Chang, M. Felker, H. Ng, and
C. Jin. Red opal: product-feature scoring from reviews.
In EC ’07: Proceedings of the 8th ACM Conference on
Electronic Commerce, pages 182–191. ACM, 2007.

27. S. Schmitt. simvar: A similarity-influenced question
selection criterion for e-sales dialogs. Artificial
Intelligence Review, 18(3-4):195–221, 2002.

28. A. Sieg, B. Mobasher, and R. Burke. Improving the
effectiveness of collaborative recommendation with
ontology-based user profiles. In HetRec ’10:
Proceedings of the 1st International Workshop on
Information Heterogeneity and Fusion in Recommender
Systems, pages 39–46. ACM, 2010.

29. E. P. Wach. Automated ontology evolution for an
e-commerce recommender. In W. Abramowicz,
L. Maciaszek, K. Wecel, W. Aalst, J. Mylopoulos,
M. Rosemann, M. J. Shaw, and C. Szyperski, editors,
Business Information Systems Workshops, volume 97 of
Lecture Notes in Business Information Processing,
pages 166–177. Springer, 2011.

30. B. Xiao and I. Benbasat. E-commerce product
recommendation agents: Use, characteristics, and
impact. MIS Quarterly, 31(1):137–209, 2007.

31. W. Zhang, G. Ding, C. L. Li Chen, and C. Zhang.
Generating virtual ratings from chinese reviews to
augment online recommendations. ACM Transactions
on Intelligent Systems and Technology, 4(1), 2013.

32. C.-N. Ziegler, S. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW ’05: Proceedings of the 14th
International World Wide Web Conference, pages 22–32.
ACM, 2005.

Session: Recommendation IUI'13, March 19–22, 2013, Santa Monica, CA, USA

94

