
Automated Ontology Evolution as a Basis for User-
Adaptive Recommender Interfaces

Elmar P. Wach
STI Innsbruck, University of Innsbruck/
Elmar/P/Wach eCommerce Consulting

Hummelsbüttler Hauptstraße 43
22339 Hamburg

+49 172 713 6928

elmar.wach@sti2.at,
wach@elmarpwach.com

ABSTRACT

This research proposes an automated OWL product domain

ontology (PDO) evolution (without a human inspection) based on

given user feedback and enhancing an existing ontology evolution

concept. Its manual activities are eliminated by formulating an

adaptation strategy for the conceptual aspects of an automated

PDO evolution and establishing a feedback cycle. The adaptation

strategy consists of a feedback transformation strategy and a PDO

evolution strategy and decides when and how to evolve by

evaluating the impact of the evolution on the application. An

evolution heuristic and evolution strategies are utilised. The

adaptation strategy was validated/ firstly “instantiated” by

applying it to a real-world conversational content-based e-

commerce recommender system as use case. The evolved PDO is

going to be evaluated with an experiment and validated with the

use case as well.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design – Methodologies. H.3.3

[Information Storage and Retrieval]: Information Search and

Retrieval – relevance feedback. H.3.5 [Information Storage and

Retrieval]: On-line Information Services – commercial services,

web-based services. I.2.4 [Artificial Intelligence]: Knowledge

Representation Formalisms and Methods – representations

(procedural and rule-based), semantic networks. I.2.6 [Artificial

Intelligence]: Learning – concept learning, knowledge

acquisition. K.4.3 [Computers and Society]: Organizational

Impacts – automation.

General Terms

Management, Measurement, Experimentation, Standardization.

Keywords

Ontology Evolution, Recommender Systems, Self-Adapting

Information Systems, Heuristics.

1. INTRODUCTION

Recommender systems in e-commerce applications have become

business relevant in filtering the vast information available in e-

shops (and the Internet) to present useful recommendations to the

user. As the range of products and customer needs and

preferences change, it is necessary to adapt the recommendation

process. Doing that manually is inefficient and usually very

expensive.

Recommenders based on product domain ontologies1 (PDO) can

extract questions about the product characteristics and features to

investigate the user preference and eventually recommend

products that match the needs of the user. By changing the PDO,

such a recommender generates different questions and/ or their

order and herewith adapts the recommender interface to the user

preference. Hence, an automated adaptation of the

recommendation process can be realised by automatically

evolving the PDO2. The high cost of the manual adaptation of the

recommendation process and the underlying PDO can herewith be

minimised.

This research proposes an automated OWL PDO evolution

(without a human inspection) based on given user feedback3 and

enhancing an existing ontology evolution concept. Its manual

activities are eliminated by formulating an adaptation strategy for

the conceptual aspects of an automated PDO evolution and

establishing a feedback cycle. Automatically evolving the PDO is

more efficient and less expensive than manually doing it. The

present research tackles an automated process for the first time (to

the best knowledge of the author).

Figure 1 depicts the starting basis schematically.

In the data modelling layer the OWL PDO evolution is induced by

different kinds of user feedback, i.e. from external and internal

data sources. When evolving the PDO, it can be necessary to

adapt instance data (i.e. products) as well in order to keep them

correctly annotated. Afterwards, the new PDO version including

associated instance data is provided to the application layer. There

1 A product domain ontology (PDO) is defined as the formal,

explicit specification of a shared conceptualisation of a product

description based on OWL DL; this definition is derived from

[6]

2 Ontology evolution is defined as the timely adaptation of a PDO

by preserving its consistency (a PDO is consistent if and only if

it preserves the OWL DL constraints); this definition is derived

from [7] and [16]

3 In order to focus this research on developing an automated

ontology evolution, the feedback is given

Copyright is held by the author.

UCERSTI 2, October 23, 2011, Chicago, IL, USA

and in the external data sources, the effect of the PDO evolution is

evaluated and again reported to the data modelling layer which

concludes the feedback cycle.

Data Modelling Layer
(OWL PDO*)

(Assumption: Initial PDO* given)

Instance Data
Annotation
(e.g. XSL)

1. Kind of feedback:

Internal data sources
from the application

layer

(Assumption: Given)
Ontology modifications

lead to instance

modifications

OWL/ RDF data

2. Kind of feedback:
External data sources

(Assumption: Given)

Application Layer
(e.g. Recommender System)

(Assumption: Given)

?

?

* Product Domain Ontology

Figure 1. PDO evolution induced by user feedback

The main research question is: How can an automated4 product

domain ontology evolution be realised based on feedback?

2. RELATED WORK
Previous approaches in the topic of this research can be found in

concepts for ontology evolution like formulated frameworks for

ontology evolution.

[13] focused on the evolution process and have defined six phases

consisting of capturing, representation, semantics of change (i.e. a

rich description about the semantic role of an ontology entity in

order to get more information for solving inconsistencies),

implementation, propagation, and validation of ontology changes.

This process is implemented in the KAON5 framework and the

Ontologging6 system. Evolution strategies have been formulated

defining elementary and composite changes for executing a

change request and eventually deciding the evolution path. [9]

focused on detecting ontology changes and have defined five

components relating the different change representations to each

other. They have proposed a component-based framework for

ontology evolution supporting data transformation between two

ontology versions, update of remote ontologies, consistent

reasoning, verification and approval of ontology changes, and

data access to an old ontology via the new one. [14] focused on

the user interaction and have provided a usage-based approach

implemented in the OntoManager7 system. The conceptual

architecture is based on the MAPE model (Monitor – Analyse –

Plan – Execute). The activities of a user are captured in a semantic

log and are instances of a user log ontology. The log data is

aggregated and visualised helping an ontology manager in

adapting the ontology. Eventually, the ontology evolution process

guarantees a transfer from one ontology version to another while

preserving consistency. [8] focused on handling inconsistency in

4 Without human inspection

5 http://kaon.semanticweb.org

6 European Commission project IST-2000-28293

7 German BMBF project SemIPort (08C5939) and European

Commission project Ontologging

changing ontologies and have defined a framework consisting of

four approaches addressing the consistent ontology evolution, the

repairing of inconsistencies, the reasoning with inconsistent

ontologies, and multi-version reasoning. For the first three

approaches consistency algorithms have been formulated. A

consistent ontology evolution is ensured by removing axioms that

are structurally connected with the conflicting axioms. [11]

focused on collaborative environments and have developed a set

of Protégé8 plugins to support different ontology evolution

scenarios. Those include synchronous (i.e. online)/ asynchronous

ontology editing, continuous editing/ periodic archiving (i.e.

versions), curation (i.e. inspection by a human)/ no curation, and

monitored (i.e. record of changes)/ non-monitored ontology

changes. The central element is a change and annotation ontology

(ChAO) which gathers and provides information about the

ontology changes including meta-information like the author and

timestamp. [10] introduced a general framework answering the

essential questions of what can be changed in an ontology and

how each change should be implemented. It is split in five steps

comprising the ontology model selection, supported operations,

consistency model (i.e. integrity rules), inconsistency resolution,

and action selection based on a preference ordering. [18]

proposed Evolva, a framework and tool for the whole ontology

evolution cycle which decreases user input by making use of

background knowledge like lexical databases, online ontologies

and unstructured Web documents. It consists of the components

information discovery (i.e. extracts content from external data

sources manually specified), data validation (i.e. identifies new

terms and checks the quality), ontology changes (i.e. integrates the

new information to the ontology), evolution validation (i.e.

handles conflicts), and evolution management (i.e. manually

controlling the evolution (modifying, filtering), records changes

and propagates them to dependent ontologies).

Due to the specific challenges of the present research like the

automated ontology evolution process, none of the frameworks

discussed can be completely used as basis, e.g. all frameworks

include a step for the human inspection of the ontology changes

before they are executed. The closest work to the research in this

paper is [13] – in the six phase evolution process, two steps

include manual activities, namely (i) “implementation” in which

the implications of an ontology change are presented to the user

and have to be approved by her before execution, and (ii)

“validation” in which performed changes can get manually

validated. The research in this paper aims at eliminating both

manual steps in [13] with the adaptation strategy and its

implementation. To automate (i), the ontology evolution is

conceptualised and implemented as a complete feedback cycle.

An insufficient ontology change is indicated by decreased metrics

and gets revised according to the evolution strategy chosen.

Hence, the ontology changes do not have to get manually

approved before execution. To automate (ii), the PDO changes are

predefined and application-oriented. Hence, only valid changes

are executed, and nobody has to manually validate them.

3. APPROACH AND PROPOSED

SOLUTION
The aim of this research is to combine the use of PDO with

processing user feedback. The work focuses on how the given

8 http://protege.stanford.edu

feedback can lead to a self-improvement of the semantic

application by adapting the PDO. In this context self-

improvement means that by automatically processing user

feedback and evolving the PDO, the defined key performance

indicators (KPI) of the application will increase.

The use case is a real-world conversational content-based e-

commerce recommender system based on PDO that semantically

describe the products offered in e-commerce applications

according to GoodRelations9. Four types of PDO changes are

defined with the following impact on the user dialogue in the

recommender system:

• Switching individuals (i.e. properties are related to other

individuals within the same class): This leads to a different

clustering of the questions

• Switching datatype property ranges (i.e. properties get

Boolean ranges instead of string ranges and vice versa

(where applicable)): This leads to textual modifications of

the questions

• Switching annotation properties label and comment (i.e.

properties get different labels and comments extracted from

another information source): This leads to textual

modifications of the questions (and maybe a need-based sales

approach instead of a technology-prone one)

• Changing annotation property priority (i.e. different priority

values): This leads to a different ranking of the questions and

skips the ones with low priorities

In this paper the PDO change switching individuals is used as an

example (confer section 4.2). A digital camera has a feature

HDMI. This PDO change defines in which feature-related section

the question is nestled whether the camera should offer HDMI.

The success and thus the KPI of an e-commerce recommender are

usually defined by the click-out rate (i.e. clicks-to-

recommendations) or conversion rate (i.e. customers-to-

recommender users). The user gives feedback to the quality of a

product recommendation in following the recommendation (i.e.

click-out) or even buying the product (i.e. conversion).

In the approach a six step adaptation strategy for the conceptual

aspects of an automated PDO evolution has been formulated and a

feedback cycle established. The adaptation strategy answers the

questions when and how to evolve the PDO by evaluating the

impact of the evolution in the precedent feedback cycle. The first

question defines the (temporal and causal) trigger initiating the

PDO change. Basically, this is receiving and transforming the

feedback into ontology input and will be addressed with the

feedback transformation strategy. The second question defines the

changing of the PDO with annotated instances. This is evolving

the PDO and will be addressed with the PDO evolution strategy.

Due to space limitations and the focus on realising a user-centric

evaluation, the adaptation strategy is not elaborated in this paper.

The strategy is used to concisely describe the application for

which the automated PDO evolution should be implemented and

the impacts of PDO changes on the application behaviour. The

interested reader is referred to [17].

9 www.purl.org/goodrelations

3.1 Evolution Heuristic and Evolution

Strategies
The automated ontology evolution is realised by utilising an

evolution heuristic and evolution strategies. Those are defined in

the fifth step of the adaptation strategy “Decide the adequate PDO

evolution”. The impact of the PDO change is measured in the

Feedback Transformer (confer section 3.2) component by

calculating the Success Trend ST for the new user feedback from

the application layer and external data sources. The ST is analysed

by a heuristic that defines the PDO change to be executed. A

heuristic is a strategy that uses accessible and loosely applicable

information to solve a problem of a human being or a machine

[12] and leads to a solution of a complex problem with simplified

conceptual aspects or reduced computation power. [3] mentioned

first the term metaheuristic for a computational method that makes

few or no assumptions about the problem being optimised and

introduced the tabu search metaheuristic [4]. The tabu search

enhances a local search (i.e. iteratively improving a criterion in

the search space) metaheuristic by using “taboos” – a solution is

not executed again according to the criteria defined in the tabu

list. The philosophy when utilising a heuristic should be that the

highest precedent ST defines the next PDO change to always

choose the best evolution. The relevant characteristics of the

heuristic have initially to be defined, confer section 4.1. This

manual effort is rewarded with a greater conceptual flexibility

resulting in an evolution that is more application-oriented. The

relevant metrics have to be defined and the calculations

formulated.

The PDO evolution is decided based on the ST. In case the

feedback includes information extracted from the PDO (e.g.

property-based feedback), the subsequent evolution (i.e. type of

PDO change) is defined by implementing the ST in the same

representation as before (e.g. ontological entity, range), and

neither statistical means nor a heuristic has to be applied.

This research proposes to additionally formulate evolution

strategies that decide the general evolution behaviour (e.g.

executing the same type of PDO change or a rollback) by

correlating the types of PDO changes needed to the ST calculated.

Additionally, the path for determining the initial ST has to be

defined, e.g. the order of the different types of PDO changes and

for which PDO they are executed (i.e. ramp-up of the evolution

strategies). The philosophy should be that the development (and

its strength) of the precedent ST defines the next type of PDO

change to distinguish different evolution impacts.

A positive ST means a positive trend (i.e. an increase) of the

metrics, a negative the opposite. The larger the figure is, the

stronger the development of the metrics (in either direction) from

the precedent to the current cycle has been. So, there are two

criteria (i.e. ST and its strength) to decide about the next type of

PDO change. Basically, there can be two resulting user

behaviours in the e-commerce recommender system:

• The user is satisfied with the product recommendation and

clicks to see the detail page or order it; in that case the

metrics increase, but it still has to be decided if a change

should be made

• The user is not satisfied with the product recommendation

and leaves the recommender; the metrics decrease, though

we do not know why she was not pleased, and a PDO change

is advisable

In the first case, one can argue either way – a change is luring to

even further increase the metrics. On the other hand, one could

keep everything as it is and wait for the next feedback. The latter

case is more urging for a change. It has still to be decided if it is a

change or just a rollback to retrieve the previous setting. So, it is

advisable to define evolution strategies reflecting different

behaviours with associated types of PDO changes. In the

following, these strategies are predefined and discussed.

Risky Evolution:

An evolution is induced in either case, i.e. a positive or a negative

trend. Different types of PDO changes than in the precedent

feedback cycle are executed. This behaviour tries to radically

improve the metrics by all means and can be described as “always

evolve differently”. The decision criteria are as follows:

• Increase of the KPI (i.e. 0 ≤ ST ≤ 1)

• Decrease of the KPI (i.e. -1 ≤ ST < 0)

Progressive Evolution:

An evolution depends on the leap in the ST between two

consecutive feedback cycles and can be fine-tuned with a

threshold defining the trend significance (i.e. the increase of the

ST between the precedent and the current cycle). In case of a

significant positive trend, the same type of PDO change as in the

precedent feedback cycle is executed. In case of a moderately

positive trend, a different type of PDO change than in the

precedent feedback cycle is executed. In case of a negative trend,

it is optional to either do a different type of PDO change than in

the precedent feedback cycle or a rollback (to be selected in the

administration interface of the Adaptation Manager). This

behaviour tries to repeat a significant increase by the same means

but gives also the option to revert a negative development. It can

be described as “learn from the past”. Additionally, the “risk” of

the evolution can be adjusted with the threshold. The higher it is

the more unlikely the same type of PDO change as in the

precedent feedback cycle is executed, and the strategy is tuned

towards the Risky Evolution (with a higher threshold). Initially,

the threshold is defined to be 20%10 and can be changed in the

administration interface as well. The decision criteria are as

follows:

• Significant increase of the KPI (for the beginning, the

threshold is defined to be 20%, i.e. 0,2 ≤ ST ≤ 1)

• Moderate increase of the KPI (i.e. 0 ≤ ST < 0,2)

• Decrease of the KPI (i.e. -1 ≤ ST < 0)

Safe Evolution:

An evolution is induced only by a negative trend. In that case, a

rollback is executed. This behaviour tries only to revert a negative

development. It can be described as “only revert negative trends”.

The decision criteria are as follows:

• Increase of the KPI (i.e. 0 ≤ ST ≤ 1)

• Decrease of the KPI (i.e. -1 ≤ ST < 0)

10 Increase of the ST by 20 basis points between the precedent and

the current feedback cycle

Rollback:

This “strategy” reverts the PDO changes from the precedent

feedback cycle (i.e. rolling back to the precedent PDO version)

and is based on any reason or decision of the manager. It is

executed only once but can be manually chosen multiple times.

The behaviour can be described as “undo the PDO changes”.

The evolution strategies introduced above are considered as basic

categories. They can be fine-tuned with regard to the associated

types of PDO changes as well as the threshold defining the trend

significance. Table 1 sums up the predefined evolution strategies,

decision criteria (ST), and the type of PDO changes to be

executed in the feedback cycle.

Table 1. Evolution strategy, Success Trend ST, and associated

type of PDO change

Evolution Strategy
Decision

Criteria

Type of PDO

Change

Risky Evolution

(“always evolve

differently”)

-1 ≤ ST ≤ 1 Different than before

Progressive Evolution

(“learn from the past”)

0,2* ≤ ST ≤ 1

0 ≤ ST < 0,2*

-1 ≤ ST < 0

Same as before

Different than before

Different than before

or Rollback

Safe Evolution

(“only revert negative

trends”)

0 ≤ ST ≤ 1

-1 ≤ ST < 0

None

Rollback

Rollback

(“undo the PDO

changes”)

Manually Rollback

* Increase of the ST by 20 basis points between the precedent and

the current feedback cycle

Each evolution strategy besides Rollback ensures an adaptive

change of the PDO and thus the recommender interface. By

selecting a strategy in the administration interface, the business

manager decides how fundamental the evolution will be.

3.2 Implementing the Strategy by

Programming an Application
By following the principles of adaptive systems [2], the

adaptation strategy is implemented in a new adaptation layer

(confer figure 2) consisting of components in which the user

feedback gets transformed (i.e. Feedback Transformer) and the

respective actions are decided and initiated (i.e. Adaptation

Manager). This system creates an evolved PDO with associated

instances.

New Adaptation Layer

Adaptation
Manager

Feedback
Transformer

Data Modelling Layer

Application Layer

I.
Initiation

II.

Execution

III.
Evaluation

Figure 2. PDO evolution cycle with a new adaptation layer

The whole evolution cycle is based on the generic change process

model [1] consisting of three iterative phases and defining four

activities:

1. Phase “initiation” – Activities: Requesting the change and

analysing/ planning the change

2. Phase “execution” – Activity: Implementing the change

3. Phase “evaluation” – Activity: Verifying/ validating the

change

The three layers (i.e. application layer, data modelling layer, and

adaptation layer) interact during the three phases of the generic

change process model forming the basis of the automated PDO

evolution process.

In the first phase “initiation” the different kinds of user feedback

are delivered to the adaptation layer and thus a PDO change

requested. As the PDO is the backbone of a semantic application,

the feedback is assumed to be RDF data. This feedback is

converted to ontology input by the Feedback Transformer

according to the feedback transformation strategy. The Feedback

Transformer accesses the user feedback channels

programmatically via SPARQL endpoints and identifies the PDO

affected with SPARQL SELECT statements. Eventually, the

Feedback Transformer calculates the Success Trends ST for each

feedback channel, e.g. by a simple value transformation or by

calculating the relative frequencies of the property values in the

feedback. Then, the PDO evolution is prepared by identifying the

next PDO change with the transformed feedback by the

Adaptation Manager. The system has to decide which evolution

actions to take according to the PDO evolution heuristic and

strategy. The Adaptation Manager analyses the transformed

feedback with a tabu search metaheuristic that chooses the PDO

change with the highest ST. The tabu criteria are implemented for

each type of feedback. Additionally, the predefined evolution

strategies (i.e. Risky Evolution, Progressive Evolution, Safe

Evolution, Rollback) are implemented and ramped-up. For

determining the initial ST, the different types of PDO changes are

sequentially executed in an alphabetical order with an exemplary

PDO. These values are then valid as starting basis for all PDO.

After this phase, the evolution strategy decides whether the (i)

same or (ii) another type of PDO change is executed. In (i), a

PDO change within the same type of PDO change is executed and

ST(t+1) calculated, except a tabu criterion defined by the

evolution heuristic is met. In this case, another type of PDO

change is executed in contrary to the evolution strategy. In (ii), the

type of PDO change and the PDO change to be executed are

determined by the evolution heuristic, and ST(t+1) is calculated.

In the second phase “execution” the changes get implemented in

the data modelling layer directed by the PDO evolution heuristic

and strategy and by retaining a consistent PDO including correctly

annotated instance data. In the Adaptation Manager the

predefined PDO changes (for the use case they are switching

individuals, switching datatype property ranges, switching

annotation properties label and comment, changing annotation

property priority, confer section 3.) are implemented and thus

ensure a consistent ontology evolution. They are executed with

SPARQL CONSTRUCT rules or programmatically. Eventually,

the versioning is implemented according to the change-based

concept and utilising an ontology with annotated logs. The new

PDO version with associated instances is provided to the

application layer.

The third phase “evaluation” concludes the feedback cycle by

measuring the impact of the change. This is done by calculating

adequate metrics relating the currently evaluated feedback from

the application layer and external data sources reported to the

adaptation layer to the precedent feedback.

The process from the feedback type to the resulting type of PDO

change is depicted in the activity diagram in figure 3.

Figure 3. Activity diagram feedback type to type of PDO

change

4. EVALUATION AND VALIDATION
The adaptation strategy has been validated/ “instantiated” by

applying it to the use case. As this recommender is already used in

live applications, it is a real-world scenario. In a conversational

approach the actions and modifications done in the adaptation

layer mainly lead to a changed user dialogue.

Implicit user feedback is derived from user interactions in the

application layer and gathered by unobtrusively monitoring user

needs. Explicit user feedback is gathered by extracting

information from various websites. Both feedback channels

deliver RDF data via separate SPARQL endpoints

programmatically accessible.

Applying the adaptation strategy could be done quite smoothly.

Only minor aspects of the strategy were clarified, restructured,

and reformulated. After having applied the strategy, the use case

was concisely described and conceived by the ontology engineer.

Moreover, the result formed the basis of the technical

specification and thus the development of the adaptation layer.

Due to space limitations the “instantiation” of the adaptation

strategy is not completely elaborated in this paper. In the

following the evolution heuristic based on tabu search is

introduced (excluding its ramp-up).

4.1 Characteristics of the Evolution Heuristic
The evolution heuristic determines the PDO change to be

executed. As the evolution strategies define if the same type of

PDO change is repeated or another one is executed, the type has

still to be determined in the latter case as well as the PDO change

(e.g. switching the property weight from the individual

WeightAndDimension to the individual GeneralCharacteristics).

For this, a tabu search metaheuristic is utilised with the following

characteristics: (i) Always the impact of the evolution in the

precedent feedback cycle is evaluated, (ii) only one implicit PDO

change is executed per cycle, and (iii) “greedy” approach: The

evolution heuristic chooses the PDO change with the highest ST.

There are two types of ST for determining the PDO change to be

executed: (i) STf_pdo_change_x is the ST for the forward PDO change

x, and (ii) STb_pdo_change_x is the ST for the backward PDO change

x (i.e. reverts the forward change). Forward PDO changes to be

executed are determined with the highest STf_pdo_change_x, backward

PDO changes with the highest STb_pdo_change_x.

In the following the tabu criteria are defined.

4.1.1 Specific Tabu Criteria sw and ch
The specific tabu criteria are specifically calculated for each type

of PDO change.

4.1.1.1 Allowed Number of Horizontal Switches sw
With sw one (set of) ontological entity of a PDO within the same

type of PDO change is switched, e.g. a PDO change of one (set

of) property or (set of) individual – most of times there is only one

switch possible like changing the individual, the property range,

or the annotation properties label and comment, and the next

change would be reverting that change. This tabu is defined as

follows:

0, case: p=1∧cfix=0

2+cfix
2/2-cfix, case: p=1∧cfix=2*k, cfix, k∈ℕ\{0}

sw = 1+cfix*(cfix-1)/2, case: p=1∧cfix=2*k-1, k∈ℕ\{0}

1+p2/2-p, case: p>1∧p=2*k, p∈ℕ\{0,1}, k∈ℕ\{0}

p*(p-1)/2, case: p>1∧p=2*k-1, p∈ℕ\{0,1}, k∈ℕ\{0}

(1)

(cfix being the number of fixed candidates within a type of PDO

change (i.e. to these candidates can be switched), p being the

number of pools of sets of entities (e.g. each source for the

properties is a pool like string ranges, Boolean ranges, DBpedia,

or WordNet; p can be changed for each type of PDO change in the

administration interface); a pool p can be switched on the level of

ontological entity (s’) or completely (s), i.e. all sets of

ontological entities are switched at once (can be changed for each

type of PDO change in the administration interface, in case of

more than one data pool p), k being a natural number to indicate

an even (cfix = 2 * k, p = 2 * k) or odd (cfix = 2 * k - 1, p = 2 * k -

1) number of fixed candidates or pools: The case for the even cfix

or p equates to an Eulerian trail, the case for the odd cfix or p to an

Eulerian circuit).

Result is the number of allowed switches sw. In case s is already

connected to cfix (e.g. s - cfix = 1), the second and third case in (1)

are lessen by this one “impossible” switch (i.e. swfix = sw - 1).

4.1.1.2 Allowed Number of Vertical PDO Change

Iterations ch
With ch successive sw switches within the same type of PDO

change are executed, i.e. the next (sets of) ontological entities are

going to be switched. This tabu is defined as follows:

(s-chfix)/n; case: p=1, n∈ℕ\{0}, s, chfix∈ℕ, s≥chfix

ch = s’/n, case: p>1∧s’⊂s (i.e. single sets), n∈ℕ\{0}, s’∈ℕ (2)

Not applicable, case: p>1∧s’≡s (i.e. all sets at once)

ch is truncated to the natural number.

(s being all sets of ontological entities within a type of PDO

change (e.g. all sets of individuals, all sets of properties, all sets of

annotation properties label and comment), s’ being a single set of

ontological entities within a type of PDO change (e.g. specific

properties) to be switched to another pool, n being the fraction of

the “free” sets (i.e. not connected to a cfix) of entities within a type

of PDO change allowed to be switched (e.g. n = 1: All free sets of

entities, n = 2: Half of the free sets, etc.; n can be changed for

each type of PDO change in the administration interface)).

Result is the number of allowed PDO change iterations ch.

Analogous to the case distinction of the horizontal switches sw

and swfix, ch is splitted in the first case in (2) into s is not

connected to cfix before switching (ch), and s is already connected

to cfix before switching (chfix).

4.1.2 General Tabu Criterion gt
To avoid an uniform optimisation and cycles, the PDO changes

within the same type of PDO change are consecutively executed

only as often as there are different types T of PDO changes not

induced by a feedback based on a PDO extraction (here: Three

times, T = 3, i.e. switching individuals, switching datatype

property ranges, and switching annotation properties label and

comment).

In case a type of PDO change has less than T PDO changes, the

general tabu criterion gt is met when all PDO changes within the

respective type of PDO change have been executed.

To calculate the general tabu criterion gt, the overall number of

switches sw and ch executed has to be respected. Hence, this tabu

is valid when having executed either all sw and ch switches within

the respective type of PDO change (case: Number of all switches

≤ T) or the number of switches executed within the same type of

PDO change equals T (here: T = 3) (case: Number of all switches

> T); this tabu is defined as follows:

sw*ch+(sw-1)*chfix≤T, case: p=1, sw, ch, chfix, T∈ℕ

gt = sw*ch≤T, case: p>1∧s’⊂s (i.e. single sets), sw, ch, T∈ℕ (3)

sw≤T, case: p>1∧s’≡s (i.e. all sets at once), sw, T∈ℕ

(3)

Result is the number of allowed PDO changes gt. The PDO

changes are sequentially executed and added to the tabu list. In

case the tabu gt or T is met, another type of PDO change is going

to be executed.

In case another type of PDO change is executed, the overall oldest

tabu is deleted from the tabu list.

After the ramp-up and in case the general tabu criterion gt or T is

met (here: The same type of PDO change shall be consecutively

executed for the fourth time), the PDO change with the highest ST

in another type of PDO change is going to be executed and

ST(t+1) calculated.

In case the “allowed number of horizontal switches” sw is met,

the PDO change with the second highest ST within the same type

of PDO change is executed and ST(t+1) calculated.

4.2 Example Calculation of the Tabu Criteria
The tabu criteria are exemplarily calculated for the type of PDO

change switching individuals. It has one data pool (p = 1, i.e. one

set of individuals); p is manually entered in the Administration

Interface. A digital camera has the following sets of properties and

individuals {s, I}: {faceDetection, Features}, {weight,

WeightAndDimension}, {videofunction, GeneralCharacteristics},

{HDMI, Ports}, {opticalZoomFactor, LensFeatures}, and

{touchscreen, Display}. So, the question if the camera should

offer HDMI is nestled between the port-related features of the

camera. By observing the relationships, it is obvious that not all

combinations make sense, e.g. HDMI cannot belong to

WeightAndDimension, but it could belong to Features or

GeneralCharacteristics. When switching the HDMI property to

another individual, e.g. from Ports to GeneralCharacteristics, the

question after HDMI could be placed aside the question for the

video function which could make more sense from a customer

point of view. The Feedback Transformer identifies the general

individuals (i.e. cfix) by parsing the strings. In the example the two

individuals mentioned above are of general meaning, i.e. cfix = 2.

• Specific tabu criterion “allowed number of horizontal

switches” sw:

(1), second case, with cfix = 2:

sw = 2 (case: s is not connected to cfix before switching)

and swfix = 1 (case: s is already connected to cfix before

switching)

 Result: The specific tabu criterion sw is met with two

switches or one switch; in this case, the next set of

individuals is going to be switched.

• Specific tabu criterion “allowed number of vertical PDO

change iterations” ch:

(2), first case, with cfix = 2, n = 2 (i.e. half of the “free” sets;

“free” meaning not connected to cfix before switching), s = 6

(i.e. properties):

ch = 2

 Result: The specific tabu criterion ch is met with switching

two sets of individuals allowed to be switched.

• General tabu criterion gt:

(3), first case:

 gt = 6 ≤ T

 Result: The general tabu criterion gt is met with switching

the minimum of six sets of individuals to cfix and T;

as T = 3 (i.e. three types of PDO changes not

induced by a feedback based on a PDO extraction),

the tabu is met with three individual switches; in

this case, another type of PDO change is going to be

executed

This means in case of a high ST for the switch of HDMI from

Ports to GeneralCharacteristics, this switch will be within the first

three individual switches and get executed. In case it is not, the

question for HDMI will remain aside the port-related questions.

4.3 Future Work: Evaluation and Validation

of the Adaptation Layer
The adaptation layer is going to be evaluated by conducting an

experiment with approximately thirty ontology experts who

evaluate the ontology evolution. The automatically evolved PDO

is going to be compared with a manually evolved one by setting

up and evaluating an experiment with ontology experts who

analyse the feedback delivered and decide the PDO changes to be

executed. Eventually, the PDO resulted from this manual

evolution is compared with the automatically evolved one

regarding the evaluation criteria consistency, completeness,

conciseness, expandability, and sensitiveness [5].

The adaptation layer is going to be validated by programming the

layer and measuring the effects in the e-commerce recommender

system. Its success is defined by the click-out rate (i.e. clicks-to-

recommendations; the user follows the recommendation by

clicking on the product recommended) which measures the impact

of the PDO evolution induced by the implicit and explicit user

feedback.

The validation scenario will be to analyse and evaluate the impact

of the PDO evolution with regard to the respective KPI reported

to the adaptation layer after having accomplished the defined

number of recommendation processes by utilising the formulated

evolution strategies, i.e. Risky, Progressive, and Safe Evolution.

In each feedback cycle the transformed feedback (i.e. ST) gets

reported to the Adaptation Manager. The feedback is PDO-based

or PDO- and property-based. According to the feedback reported,

the PDO evolves. The new PDO version is provided to the data

modelling layer and the application layer, and eventually an

adapted recommender interface is presented to the customer. The

feedback circle of the automated system concludes with re-

evaluating the KPI after having again accomplished the defined

number of recommendation processes.

The intended results are a highly user-adaptive system and

eventually better recommendations given to the customer leading

to an increase of the defined KPI. The expected business impacts

are a higher customer satisfaction and loyalty and eventually

increased revenue for the provider of the e-commerce application

(and the recommender system).

5. CONCLUSION
The need for automatically updating and evolving ontologies is

urging in today’s usage scenarios. Here, it is the basis for creating

a user-adaptive recommender interface. The present research

tackles an automated process for the first time (to the best

knowledge of the author). The reason for that can be found in the

ontology definition “formal, explicit specification of a shared

conceptualisation” [6]. “Shared” means the knowledge contained

in an ontology is consensual, i.e. it has been accepted by a group

of people [15]. Entailed from that, one can argue that by

processing feedback in an ontology and evolving it, it is no longer

a shared conceptualisation but an application-specific data model.

On the other hand, it is still shared by the group of people who are

using the application. It may even be argued that the ontology has

been optimised for the usage of that group (in a specific context or

application) and thus is a new way of interpreting ontologies:

They can also be a specifically tailored and usage-based

knowledge representation derived from an initial ontology – an

ontology view, preserving most of the advantages like the support

of automatically processing information. Thus, this changed way

of conceiving ontologies could facilitate the adoption and spread

of using this powerful representation mechanism in the real world,

as it is easier to accomplish consensus within a smaller group of

people than a larger one.

In this research the PDO are based on GoodRelations and evolve

within that upper ontology. This ontology as well as the

“subsumed” PDO conforms to the ontology definition by [6]. The

PDO are application-specific and evolve according to the needs of

their users. Hence, they offer the advantages of both worlds.

In the next steps of this research the adaptation layer is going to

be evaluated and validated.

6. ACKNOWLEDGMENTS
The research presented in this paper is funded by the Austrian

Research Promotion Agency (FFG) and the Federal Ministry of

Transport, Innovation, and Technology (BMVIT) under the FIT-

IT “Semantic Systems” program (contract number 825061).

7. REFERENCES
[1] Bennett, K. H. and Rajlich, V. T. 2000. Software

maintenance and evolution: A roadmap, Proceedings of the

Conference on the Future of Software Engineering, pp. 73-

87.

[2] Broy, M. et al. 2009. Formalizing the notion of adaptive

system behavior, Proceedings of the 2009 ACM Symposium

on Applied Computing (SAC ’09), pp. 1029-1033.

[3] Glover, F. W. 1986. Future paths for integer programming

and links to artificial intelligence, Comput. Oper. Res.,

Volume 13, pp. 533-549.

[4] Glover, F. W. and Laguna, M. 1997. Tabu Search, Kluwer

Academic Publishers.

[5] Gómez-Pérez, A. 2001. Evaluation of ontologies,

International Journal of Intelligent Systems, Volume 16, pp.

391-409.

[6] Gruber, T. R. 1993. Toward principles for the design of

ontologies used for knowledge sharing, Formal ontology in

conceptual analysis and knowledge representation, Kluwer

Academic Publishers.

[7] Haase, P. and Stojanovic, L. 2005. Consistent evolution of

OWL ontologies, Proceedings of the 2nd European Semantic

Web Conference (ESWC 2005), pp. 182 - 197.

[8] Haase, P. et al. 2005. A framework for handling

inconsistency in changing ontologies, Proceedings of the

2005 International Semantic Web Conference (ISWC05), pp.

353-367.

[9] Klein, M. and Noy N. F. 2003. A component-based

framework for ontology evolution, Proceedings of the IJCAI-

03 Workshop on Ontologies and Distributed Systems.

[10] Konstantinidis, G. et al. 2007. Ontology evolution: A

framework and its application to RDF, Proceedings of the

Joint ODBIS & SWDB Workshop on Semantic Web,

Ontologies, Databases.

[11] Noy, N. F. et al. 2006. A framework for ontology evolution

in collaborative environments, Proceedings of the 2005

International Semantic Web Conference (ISWC05), pp. 544-

558.

[12] Pearl, J. 1983. Heuristics: Intelligent search strategies for

computer problem solving, Addison-Wesley.

[13] Stojanovic, L. et al. 2002. User-driven ontology evolution

management, Proceedings of the 13th International

Conference on Knowledge Engineering and Knowledge

Management (EKAW ’02), pp. 285-300.

[14] Stojanovic, N. et al. 2003. The OntoManager – a system for

the usage-based ontology management, LNCS 2888, pp. 858-

875.

[15] Studer, R. et al. 1998. Knowledge engineering: Principles

and methods, Data & Knowledge Engineering, Volume 25,

Number 1-2, pp. 161-198.

[16] Suárez-Figueroa, M. C. and Gómez-Pérez, A. 2008. Towards

a glossary of activities in the ontology engineering field,

Proceedings of the Sixth International Conference on

Language Resources and Evaluation (LREC ’08).

[17] Wach, E. P., 2011. Automated ontology evolution for an e-

commerce recommender, Proceedings of the 14th

International Conference on Business Information Systems

(BIS 2011), in press.

[18] Zablith, F. 2009. Evolva: A comprehensive approach to

ontology evolution, Proceedings of the 6th European

Semantic Web Conference (ESWC 2009).

