
Automated Ontology Evolution for an E-Commerce

Recommender1

Elmar P. Wach

STI Innsbruck, University of Innsbruck/ Elmar/P/Wach eCommerce Consulting

Technikerstraße 21a, 6020 Innsbruck, Austria/ Hummelsbüttler Hauptstraße 43, 22339

Hamburg, Germany

elmar.wach@sti2.at/ wach@elmarpwach.com

Abstract. This research proposes a completely automated OWL product

domain ontology (PDO) evolution by enhancing an existing ontology evolution

concept. Its manual activities are eliminated by formulating an adaptation

strategy for the conceptual aspects of an automated PDO evolution and

establishing a feedback cycle. This strategy decides when and how to evolve by

evaluating the impact of the evolution in the precedent feedback cycle and is

implemented in a new adaptation layer. The adaptation strategy was validated/

firstly “instantiated” by applying it to a real-world conversational content-based

e-commerce recommender as use case.

Keywords

Ontology Evolution, Ontology Versioning, Recommender Systems, Self-Adapting

Information Systems, Heuristics.

1. Introduction

Recommender systems in e-commerce applications have become business relevant in

filtering the vast information available in e-shops (and the Internet) to present useful

product recommendations to the user. As the range of products and customer needs

and preferences change, it is necessary to adapt the recommendation process. Doing

that manually is inefficient and usually very expensive. Recommenders based on

product domain ontologies2 (PDO) modelling the products offered in the e-commerce

application can extract questions about the product characteristics and features to

investigate the user preference and eventually recommend products that match the

1 The research presented in this paper is funded by the Austrian Research Promotion Agency

(FFG) and the Federal Ministry of Transport, Innovation, and Technology (BMVIT) under

the FIT-IT “Semantic Systems” program (contract number 825061)
2 A product domain ontology (PDO) is defined as the formal, explicit specification of a shared

conceptualisation of a product description based on OWL DL; this definition is derived from

[Gruber, T. R. 1993]

2 Elmar P. Wach

needs of the user. By changing the PDO, such a recommender generates different

questions and/ or their order. Hence, an automated adaptation of the recommendation

process can be realised by automatically evolving the PDO3. The high cost of the

manual adaptation of the recommendation process and the underlying PDO can

herewith be minimised.

This research proposes a completely automated OWL PDO evolution (without a

human inspection) based on given user feedbacks4 and enhancing an existing

ontology evolution concept. Its manual activities are eliminated by formulating an

adaptation strategy for the conceptual aspects of an automated PDO evolution and

establishing a feedback cycle. Automatically evolving the PDO is more efficient and

less expensive than manually doing it. The present research tackles an automated

process for the first time (to the best knowledge of the author).

2. Related work

Previous approaches to the topic of this research can be found in concepts for

ontology evolution like formulated frameworks for ontology evolution, e.g. [Haase, P.

et al. 2005], [Klein, M. and Noy N. F. 2003], [Konstantinidis, G. et al. 2007], [Noy,

N. F. et al. 2006], [Stojanovic, L. et al. 2002], [Stojanovic, N. et al. 2003], [Zablith, F.

2009]. Due to the specific challenges of the present research like the automated

ontology evolution process, none of the identified frameworks can be completely used

as basis, e.g. all of the frameworks include a step for the human inspection of the

ontology changes before they are executed. The closest work to the research in this

paper is [Stojanovic, L. et al. 2002] – in the six phase evolution process, two steps

include manual activities, namely (i) “Implementation” in which the implications of

an ontology change are presented to the user and have to be approved by her before

execution, and (ii) “Validation” in which performed changes can get manually

validated. This research aims at eliminating both manual steps in [Stojanovic, L. et al.

2002] with the adaptation strategy and its implementation. To automate (i), the

ontology evolution is conceptualised and implemented as a complete feedback cycle

[Bennett, K. H. and Rajlich, V. T. 2000]. An insufficient ontology change is indicated

by decreased metrics and gets revised according to the evolution strategy chosen.

Hence, the ontology changes do not have to get manually approved before execution.

To automate (ii), the PDO changes are predefined and application-oriented. Hence,

only valid changes are executed, and nobody has to manually validate them. This

approach is addressed with the adaptation strategy and its implementation as a new

adaptation layer consisting of two components [Broy, M. et al. 2009].

3 Ontology evolution is defined as the timely adaptation of a PDO by preserving its consistency

(a PDO is consistent if and only if it preserves the OWL DL constraints); this definition is

derived from [Haase, P. and Stojanovic, L. 2005] and [Suárez-Figueroa, M. C. and Gómez-

Pérez, A. 2008]
4 In order to focus this research on developing an automated ontology evolution, the feedback is

assumed to be given

Automated Ontology Evolution for an E-Commerce Recommender 3

3. Adaptation strategy

The adaptation strategy addresses when a change has to be executed and how the

changes will be executed in the PDO by evaluating the impact of the evolution in the

precedent feedback cycle. The first question defines the (temporal and causal) trigger

initiating the PDO change. This is addressed with the feedback transformation

strategy (confer section 3.1) which is implemented in the Feedback Transformer.

The second question defines the changing of the PDO with annotated instances (i.e.

products). This is evolving the PDO and will be addressed with the PDO evolution

strategy (confer section 3.2) which is implemented in the Adaptation Manager.

By following the principles of adaptive systems [Broy, M. et al. 2009], the

strategies are implemented in a new adaptation layer (confer figure 1) consisting of

components in which the user feedback gets transformed (i.e. Feedback Transformer)

and the respective actions are decided and initiated (i.e. Adaptation Manager).

Fig. 1. Evolution cycle with a new adaptation layer

3.1 Feedback transformation strategy

The feedback transformation strategy defines when the PDO change. It transforms

different kinds of user feedback (e.g. implicit, explicit) into ontology input (i.e.

calculating Success Trends ST). This strategy is implemented in the Feedback

Transformer where the user feedback channels and the PDO affected by the feedback

reported are identified, the feedback is analysed and gathered, and eventually

transformed.

The strategy comprises the following steps:

1. Identify the user feedback channels

2. Analyse and gather the user feedback

3. Transform the user feedback

Ad 1. Identify the user feedback channels

4 Elmar P. Wach

In this step the application setup is analysed with regard to the available user

feedback. In order to focus this research on developing an automated PDO evolution,

the feedback is assumed to be given, and thus extracting the information is out of

scope. The application can provide two kinds of user feedback to get a complete view

of the user: Internal data sources from the application layer like the KPI5 or statistical

evaluations of the usage. As the application is based on PDO, PDO changes influence

the application behaviour, and KPI and statistical evaluations of the usage of the

application layer are a valid feedback for the impact of the PDO evolution.

The application setup can also provide external data sources like data and

information extractions from the Web, databases, or ontologies. E.g., discussions in

Blogs and portals, official and unofficial product and product feature ratings, and

appearances of new features and product aspects are valuable PDO information.

The two kinds of user feedback are delivered via different feedback channels that

have to be identified and analysed with regard to the feedback representation, its

accessibility, and the PDO affected. As the PDO is the backbone of a semantic

application, the feedback is assumed to be RDF data. In case it is not, it is

recommended to convert it to RDF6. A crucial aspect is the accessibility of the user

feedback – can it be programmatically retrieved by the Feedback Transformer, e.g.

via an API or from a SPARQL endpoint?

Ad 2. Analyse and gather the user feedback

In this step the user feedback channels and the feedback delivered are analysed with

regard to the feedback content, structure, and meaning. In case the feedback is in

RDF, e.g. it can be dynamically queried with SPARQL SELECT statements.7 In order

to adequately interpret the feedback, the metrics delivered have to be identified as

well as their meaning have to be clear. Generally, there can be two types of feedback:

Explicit user feedback could be provided by answering questions about the user

satisfaction with the application. As this effort cannot be expected from a user, an

alternative is to extract feedback from the Web that could also deliver new

information and aspects about the products offered. Implicit user feedback is given by

the user as a side-effect of the usage behaviour, e.g. by clicking on the product

recommended.

Currently, two feedback channels with two types of feedbacks are defined:

− Implicit feedback channel (user feedback derived from user interactions in the

application layer) “KPI trend”: The implicit feedback mainly evaluates the

success/ usage/ usability of the e-commerce recommender; it is PDO-based

− Explicit feedback channel (user feedback extracted from the Web) “Feature

relevance”: The explicit feedback gathers information about products based on

PDO extractions and is represented as an annotation property; it is PDO- and

property-based

The RDF of the KPI trend feedback includes a value indicating a positive or negative

trend of the defined KPI between two PDO versions (i.e. relating the currently

5 Key Performance Indicator, e.g. click-out rate (i.e. clicks-to-recommendations ratio)
6 Generating the RDF data is out of scope
7 Due to space limitations, SPARQL statements are omitted

Automated Ontology Evolution for an E-Commerce Recommender 5

evaluated feedback to the precedent one based on the previous changes). It is defined

as KPI(t) with the range [-1…∞]. In rare cases, the value can calculatory be larger

than +1. This feedback repository is queried with SPARQL SELECT statements to

retrieve the KPI for each latest PDO version that represent a valid PDO version test.

The RDF of the feature relevance feedback includes the property (i.e. feature

name) and its relevance, e.g. based on the count of appearances in the Web over a

period of time. It is defined as Feat(t) with the range [0…+100]. After having

retrieved feedback from the first feedback channel, this feedback repository is queried

with SPARQL SELECT statements to retrieve the relevance for each latest PDO

version to be changed.

Ad 3. Transform the user feedback

In this step the different types of feedback are transformed to ontology input, and thus

a PDO change is requested. The impact of the change is measured by calculating

adequate metrics for the new user feedback from the application layer and external

data sources reported to the adaptation layer and for each feedback channel, defined

as Success Trends STch, e.g. with an algorithm, formula, or transformation. In case the

feedback includes information extracted from the PDO, the transformed feedback has

to be in the same representation as before (e.g. ontological entity, range).

In case several feedback channels deliver analogue feedbacks, the respective

channels have to be weighted separately. The channel weight is a factor that expresses

the relative importance of either feedback channel for the PDO evolution. It can be

changed between two feedback cycles, though it is recommended to observe the

quality of the feedbacks over time before tuning it. The weights for the corresponding

analogue feedback channels sum up to 100%. Additionally, the ST calculation can

respect the certainty of a feedback channel. The certainty expresses the probability of

the correctness of the reported feedback as a percentage value.

The KPI trend KPI(t) is converted by a simple value transformation to the ST with

the range [-1…+1] relating the currently transformed feedback to the precedent one.

In the rare case of a KPI value larger than +1, it will be normalised to +1.

The feature relevance Feat(t) is converted by calculating the new relevance of the

properties with the relative frequencies of the properties in the feature relevance

feedback. The ST with the range [0…+100] is calculated by determining classes

correlated to that range and based on the interval of the relative frequencies of the

properties. To the classes the corresponding properties (i.e. the relative frequency of

the property in the feature relevance feedback is within the bounds of the respective

class) as well as the respective relevance are assigned. The new relevance is

represented as before (i.e. as an annotation property).

After having transformed the different feedback types, the calculated ST are

reported to the next component, i.e. the Adaptation Manager.

3.2 PDO evolution strategy

The PDO evolution strategy defines how the PDO change. It associates an evolution

action to the ST and ensures a consistent new PDO version. This strategy is

implemented in the Adaptation Manager where the structure of the respective PDO

6 Elmar P. Wach

gets queried with SPARQL SELECT statements and the PDO changes are executed

with SPARQL CONSTRUCT rules or programmatically according to an evolution

heuristic and predefined evolution strategies. Alternatively, a statistical analysis of the

user feedback and its history can be conducted.

The strategy comprises the following steps:

4. Define the representation of PDO changes

5. Define the analysis of the transformed feedback

6. Ensure a consistent ontology evolution and versioning

Ad 4. Define the representation of PDO changes

In this step options for the representation of PDO changes are defined, e.g. reusing an

existing representation. The change representation defines the possible and allowed

PDO changes.

For deciding whether an existing representation of ontology changes should be

reused, adequate evolution criteria have to be defined. An existing representation has

to be investigated with regard to the PDO representation language (e.g. OWL 1, OWL

2) and the PDO changes (e.g. switching a specific individual, switching the range of a

specific property) offered – they have to constitute the types of PDO changes8 needed

by the application and to be executed and evaluated in the next feedback cycle, i.e.

PDO evolution cycle. In case the application utilises a specific PDO representation,

this is the preferred basis for the representation of its changes as well – in this

research the PDO are based on GoodRelations9. In case the necessary evolution

criteria are not met by an existing or application-oriented representation, a customised

one has to be developed, e.g. a specific ontology of changes.

As the PDO model the knowledge queried by the user, it is helpful to describe

probable user scenarios to predefine the types of PDO changes needed.

Ad 5. Define the analysis of the transformed feedback

In this step options for the analysis of the transformed feedback are defined, e.g.

statistical means or utilising a heuristic, and the adequate PDO evolution is decided.

The impact of the PDO change is measured in the Feedback Transformer by

calculating the ST for the new user feedback from the application layer and external

data sources reported to the adaptation layer and for each feedback channel. The ST

can be analysed by statistical means. The method as well as the relevant metrics has

to be defined and the calculations formulated. By programmatically calculating the

relevant metrics, a complete automation of the analysis as well as the derived

evolution actions can be achieved.

Another option is to formulate and utilise a heuristic that defines the PDO change

to be executed. A heuristic is a strategy that uses accessible and loosely applicable

information to solve a problem of a human being or a machine [Pearl, J. 1983] and

leads to a solution of a complex problem with simplified conceptual aspects or

reduced computation power. [Glover, F. W. 1986] mentioned first the term

metaheuristic for a computational method that makes few or no assumptions about the

8 Currently defined are switching individuals, switching datatype property ranges, switching

annotation properties label and comment, and changing annotation property priority
9 www.purl.org/goodrelations

Automated Ontology Evolution for an E-Commerce Recommender 7

problem being optimised and introduced the tabu search metaheuristic [Glover, F. W.

and Laguna, M. 1997] which is utilised in this research with the philosophy that the

highest precedent ST (“greedy”) defines the next PDO change to always choose the

best evolution.

The relevant characteristics of the heuristic have initially to be defined (confer

section 4.). This manual effort is rewarded with a greater conceptual flexibility

resulting in a more specific application-oriented evolution behaviour with regard to its

impact on the application. The relevant metrics have to be defined and the

calculations formulated.

Regardless of the analysis method chosen, the PDO evolution is decided based on

the ST. In case the feedback includes information extracted from the PDO, the

subsequent evolution (i.e. type of PDO change) is defined by implementing the ST in

the same representation as before (e.g. ontological entity, range), and neither

statistical means nor a heuristic has to be applied.

In case a heuristic is chosen, this research proposes to additionally formulate

evolution strategies that decide the general evolution behaviour (e.g. executing the

same type of PDO change or a rollback) by correlating the types of PDO changes

needed to the ST calculated. Additionally, the path for determining the initial ST has

to be defined, e.g. the order of the different types of PDO changes and for which PDO

they are executed (i.e. ramp-up of the evolution strategies). The philosophy should be

that the development (and its strength) of the precedent ST defines the next type of

PDO change to distinguish different evolution impacts.

The predefined evolution strategies summarised in table 1 are considered as basic

categories. They can be fine-tuned with regard to the associated types of PDO

changes as well as the threshold defining the trend significance.

Table 1. Evolution strategy, Success Trend ST, and associated type of PDO change

Evolution Strategy
Decision

Criteria
Type of PDO Change

Risky Evolution
(“always evolve differently”)

-1 ≤ ST ≤ 1 Different than before

Progressive Evolution
(“learn from the past”)

0,2* ≤ ST ≤ 1

0 ≤ ST < 0,2*

-1 ≤ ST < 0

Same as before

Different than before

Different than before or Rollback

Safe Evolution
(“only revert negative trends”)

0 ≤ ST ≤ 1

-1 ≤ ST < 0

None

Rollback

Rollback

(“undo the ontology changes”)
Manually Rollback

* Threshold trend significance: Increase of the ST by 20 basis points between the precedent

and the current feedback cycle

Each evolution strategy besides Rollback ensures an adaptive change of the PDO. By

selecting a strategy in the administration interface, the business manager decides how

fundamental the evolution will be.

Ad 6. Ensure a consistent ontology evolution and versioning

8 Elmar P. Wach

After having chosen the PDO changes to be executed, the PDO has to evolve

depending on rules and by retaining its consistency to eventually provide its

knowledge to the application layer. This is done by executing SPARQL

CONSTRUCT rules or programmatically. Due to space limitations, the rules are

omitted.

When evolving the PDO, it has to be clear how the PDO has been evolved over

time, i.e. the different PDO evolutions have to be versioned. By versioning a PDO, its

changes get documented, and the historical path of evolution gets traceable. In the

context of this research this is of paramount importance for deciding the next PDO

change to be executed and reverting the changes executed in the precedent feedback

cycle, i.e. a rollback.

The preferred concept of ontology versioning is change-based versioning (i.e. each

state gets its own version number and additionally stores information about the

changes made), because it facilitates change detection, integration, conflict

management [Mädche, A. et al. 2003], and it allows the interpretation how PDO

changes influence the metrics. A change-based versioning can be best realised by

tracking the PDO changes in a semantic log [Mädche, A. et al. 2002].

4. Evaluation and Validation

The adaptation strategy has been validated/ “instantiated” by applying it to the use

case which is a real-world conversational content-based e-commerce recommender

system based on PDO that semantically describe the products offered in e-commerce

applications according to GoodRelations. Implicit user feedback is derived from user

interactions in the application layer and gathered by unobtrusively monitoring user

needs. Explicit user feedback is gathered by extracting information from various

websites. Both feedback channels deliver RDF data via separate SPARQL endpoints

programmatically accessible. Four types of PDO changes are defined, i.e. switching

individuals, switching datatype property ranges, switching annotation properties label

and comment, and changing annotation property priority.

Applying the adaptation strategy could be done quite smoothly. Only minor aspects

of the strategy were clarified, restructured, and reformulated. After having applied the

strategy, the use case was concisely described and conceived by the ontology

engineer. Moreover, the result formed the basis of the technical specification and thus

the development of the adaptation layer.

Due to space limitations the “instantiation” of the adaptation strategy is not

completely elaborated in this paper. In the following the evolution heuristic based on

tabu search is introduced in extracts (excluding its ramp-up, for instance). The

“taboos” are defined as follows:

− General tabu criterion gt:

• To avoid an uniform optimisation and cycles, the PDO changes within the same

type of PDO change are consecutively executed only as often as there are

different types T of PDO changes not induced by a feedback based on a PDO

extraction

Automated Ontology Evolution for an E-Commerce Recommender 9

• Exception: In case a type of PDO change has less than T PDO changes, the

general tabu criterion is met when all PDO changes within the respective type of

PDO change have been executed

• The general tabu criterion gt is calculated by multiplying the two specific tabu

criteria defined below; result is the number of allowed PDO changes gt; the

PDO changes are sequentially executed and added to the tabu list

• After the ramp-up phase and in case the general tabu criterion gt or T is met, the

PDO change with the highest ST in another type of PDO change is going to be

executed and ST(t+1) calculated

− Specific tabu criteria (specifically calculated for each type of PDO change):

• “Allowed number of horizontal switches” sw: With sw one (set of) ontological

entity of a PDO within the same type of PDO change is switched, e.g. a PDO

change of one (set of) property or (set of) individual – most of times there is

only one switch possible like changing the individual, the property range, or the

annotation properties label and comment, and the next change would be

reverting that change. This tabu is defined as follows:

0, case: p = 1 ∧ cfix = 0

2 + cfix
2
 / 2 - cfix, case: p = 1 ∧ cfix = 2*k, cfix, k ∈ ℕ \ {0}

sw = 1 + cfix * (cfix - 1) / 2, case: p = 1 ∧ cfix = 2*k - 1, k ∈ ℕ \ {0}

1 + p
2
 / 2 - p, case: p > 1 ∧ p = 2*k, p ∈ ℕ \ {0,1}, k ∈ ℕ \ {0}

p * (p - 1)/2, case: p > 1 ∧ p = 2*k - 1, p ∈ ℕ \ {0,1}, k ∈ ℕ \ {0}

(1)

(cfix being the number of fixed candidates within a type of PDO change (i.e. to

these candidates can be switched), p being the number of pools of sets of entities

(e.g. each source for the properties is a pool like string ranges, Boolean ranges,

DBpedia, or WordNet; p can be changed for each type of PDO change in the

10 Elmar P. Wach

administration interface); a pool p can be switched on the level of ontological

entity (s’) or completely (s), i.e. all sets of ontological entities are switched at

once (can be changed for each type of PDO change in the administration

interface, in case of more than one data pool p), k being a natural number to

indicate an even (cfix = 2 * k, p = 2 * k) or odd (cfix = 2 * k - 1, p = 2 * k - 1)

number of fixed candidates or pools: The case for the even cfix or p equates to an

Eulerian trail, the case for the odd cfix or p to an Eulerian circuit)

Result is the number of allowed switches sw. In case s is already connected to

cfix (e.g. s - cfix = 1), the second and third case in (1) are lessen by this one

“impossible” switch (i.e. swfix = sw - 1). In case sw is met, the PDO change with

the second highest ST within the same type of PDO change is going to be

executed and ST(t+1) calculated.

• “Allowed number of vertical PDO change iterations” ch: With ch successive sw

switches within the same type of PDO change are executed, i.e. the next (sets

of) ontological entities are going to be switched. This tabu is defined as follows:

(s - chfix) / n; case: p = 1, n ∈ ℕ \ {0}, s, chfix ∈ ℕ, s ≥ chfix

ch = s’/ n, case: p > 1 ∧ s’ ⊂ s (i.e. single sets), n ∈ ℕ \ {0}, s’ ∈ ℕ

Not applicable, case: p > 1 ∧ s’ ≡ s (i.e. all sets at once)

(2)

ch is truncated to the natural number.

(s being all sets of ontological entities within a type of PDO change (e.g. all sets

of individuals, all sets of properties, all sets of annotation properties label and

comment), s’ being a single set of ontological entities within a type of PDO

change (e.g. specific properties) to be switched to another pool, n being the

fraction of the sets of entities within a type of PDO change allowed to be

switched (e.g. n = 1: All sets of entities, n = 2: Half of the sets, etc.; n can be

changed for each type of PDO change in the administration interface))

Result is the number of allowed PDO change iterations ch. Analogous to the

case distinction of the horizontal switches sw and swfix, ch is splitted in the first

case in (2) into s is not connected to cfix before switching (ch), and s is already

connected to cfix before switching (chfix).

Automated Ontology Evolution for an E-Commerce Recommender 11

− In case another type of PDO change is executed, the oldest tabu of the precedent

type of PDO change is deleted from the tabu list

In addition to this validation, the adaptation strategy is going to be evaluated by

conducting an experiment with approximately thirty ontology experts who analyse

and formulate ontology evolution characteristics. These are then aligned with the

adaptation strategy and adopted accordingly where applicable.

The adaptation layer is going to be evaluated by conducting an experiment with

approximately thirty ontology experts who evaluate the ontology evolution. The

automatically evolved PDO is going to be compared with a manually evolved one by

setting up and evaluating an experiment with ontology experts who analyse the

feedbacks delivered and decide the PDO changes to be executed. Eventually, the PDO

resulted from this manual evolution is compared with the automatically evolved one

regarding the evaluation criteria consistency, completeness, conciseness,

expandability, and sensitiveness [Gómez-Pérez, A. 2001].

The adaptation layer is going to be validated by programming the layer and

measuring the effects in the e-commerce recommender system. Its success is defined

by the click-out rate (i.e. clicks-to-recommendations) that measures the impact of the

PDO evolution induced by the implicit and explicit user feedback.

The intended results are a highly adaptive system and eventually better

recommendations given to the customer leading to an increase of the defined KPI.

The expected business impacts are a higher customer satisfaction and loyalty and

eventually increased revenue for the provider of the e-commerce application (and the

recommender system).

5. Conclusion

The need for automatically updating and evolving ontologies is urging in today’s

usage scenarios. The present research tackles an automated process for the first time

(to the best knowledge of the author). The reason for that can be found in the ontology

definition “formal, explicit specification of a shared conceptualisation” [Gruber, T. R.

1993]. “Shared” means the knowledge contained in an ontology is consensual, i.e. it

has been accepted by a group of people. Entailed from that, one can argue that by

processing feedback in an ontology and evolving it, it is no longer a shared

conceptualisation but an application-specific data model. On the other hand, it is still

shared by the group of people who are using the application. It may even be argued

that the ontology has been optimised for the usage of that group (in a specific context

or application) and thus is a new way of interpreting ontologies: They can also be a

specifically tailored and usage-based knowledge representation derived from an initial

ontology – an ontology view, preserving most of the advantages like the support of

automatically processing information. Thus, this changed way of conceiving

ontologies could facilitate the adoption and spread of using this powerful

representation mechanism in the real world, as it is easier to accomplish consensus

within a smaller group of people than a larger one.

12 Elmar P. Wach

In this research the PDO are based on GoodRelations and evolve within that upper

ontology. This ontology as well as the “subsumed” PDO conforms to the ontology

definition by [Gruber, T. R. 1993]. The PDO are application-specific and evolve

according to the needs of their users. Hence, they offer the advantages of both worlds.

6. References

[Bennett, K. H. and Rajlich, V. T. 2000] Software maintenance and evolution: A roadmap,

Proceedings of the Conference on the Future of Software Engineering, pp. 73-87.

[Broy, M. et al. 2009] Formalizing the notion of adaptive system behavior, Proceedings of the

2009 ACM Symposium on Applied Computing (SAC ’09), pp. 1029-1033.

[Glover, F. 1986] Future paths for integer programming and links to artificial intelligence,

Comput. Oper. Res., Volume 13, pp. 533-549.

[Glover, F. and Laguna, M. 1997] Tabu Search, Kluwer Academic Publishers.

[Gómez-Pérez, A. 2001] Evaluation of ontologies, International Journal of Intelligent Systems,

Volume 16, pp. 391-409.

[Gruber, T. R. 1993] Toward principles for the design of ontologies used for knowledge

sharing, Formal ontology in conceptual analysis and knowledge representation, Kluwer

Academic Publishers.

[Haase, P. and Stojanovic, L. 2005] Consistent evolution of OWL ontologies, Proceedings of

the 2nd European Semantic Web Conference (ESWC 2005), pp. 182 - 197.

[Haase, P. et al. 2005] A framework for handling inconsistency in changing ontologies,

Proceedings of the 2005 International Semantic Web Conference (ISWC05), pp. 353-367.

[Klein, M. and Noy N. F. 2003] A component-based framework for ontology evolution,

Proceedings of the IJCAI-03 Workshop on Ontologies and Distributed Systems.

[Konstantinidis, G. et al. 2007] Ontology evolution: A framework and its application to RDF,

Proceedings of the Joint ODBIS & SWDB Workshop on Semantic Web, Ontologies,

Databases.

[Mädche, A. et al. 2002] Managing multiple ontologies and ontology evolution in Ontologging,

Proceedings of the IFIP 17th World Computer Congress – TC12 Stream on Intelligent

Information Processing, pp. 51-63.

[Mädche, A. et al. 2003] Managing multiple and distributed Ontologies on the Semantic Web,

The VLDB Journal – The International Journal on Very Large Data Bases, Volume 12,

Issue 4, pp. 286-302.

[Noy, N. F. et al. 2006] A framework for ontology evolution in collaborative environments,

Proceedings of the 2005 International Semantic Web Conference (ISWC05), pp. 544-558.

[Pearl, J. 1983] Heuristics: Intelligent search strategies for computer problem solving,

Addison-Wesley.

[Stojanovic, L. et al. 2002] User-driven ontology evolution management, Proceedings of the

13th International Conference on Knowledge Engineering and Knowledge Management

(EKAW ’02), pp. 285-300.

[Stojanovic, N. et al. 2003] The OntoManager – a system for the usage-based ontology

management, LNCS 2888, pp. 858-875.

[Suárez-Figueroa, M. C. and Gómez-Pérez, A. 2008] Towards a glossary of activities in the

ontology engineering field, Proceedings of the Sixth International Conference on Language

Resources and Evaluation (LREC ’08).

[Zablith, F. 2009] Evolva: A comprehensive approach to ontology evolution, Proceedings of

the 6th European Semantic Web Conference (ESWC 2009).

