Automated Ontology Evolution for an E-Commerce
Recommender:

Elmar P. Wach

STI Innsbruck, University of Innsbruck/ Elmar/P/Wach eCommerce Consulting
Technikerstrale 21a, 6020 Innsbruck, Austria/ Hummelsbiittler HauptstraBe 43, 22339
Hamburg, Germany

elmar.wach @sti2.at/ wach@elmarpwach.com

Abstract. This research proposes a completely automated OWL product
domain ontology (PDO) evolution by enhancing an existing ontology evolution
concept. Its manual activities are eliminated by formulating an adaptation
strategy for the conceptual aspects of an automated PDO evolution and
establishing a feedback cycle. This strategy decides when and how to evolve by
evaluating the impact of the evolution in the precedent feedback cycle and is
implemented in a new adaptation layer. The adaptation strategy was validated/
firstly “instantiated” by applying it to a real-world conversational content-based
e-commerce recommender as use case.

Keywords

Ontology Evolution, Ontology Versioning, Recommender Systems, Self-Adapting
Information Systems, Heuristics.

1. Introduction

Recommender systems in e-commerce applications have become business relevant in
filtering the vast information available in e-shops (and the Internet) to present useful
product recommendations to the user. As the range of products and customer needs
and preferences change, it is necessary to adapt the recommendation process. Doing
that manually is inefficient and usually very expensive. Recommenders based on
product domain ontologies? (PDO) modelling the products offered in the e-commerce
application can extract questions about the product characteristics and features to
investigate the user preference and eventually recommend products that match the

! The research presented in this paper is funded by the Austrian Research Promotion Agency
(FFG) and the Federal Ministry of Transport, Innovation, and Technology (BMVIT) under
the FIT-IT “Semantic Systems” program (contract number 8§25061)

2 A product domain ontology (PDO) is defined as the formal, explicit specification of a shared
conceptualisation of a product description based on OWL DL; this definition is derived from
[Gruber, T. R. 1993]

2 Elmar P. Wach

needs of the user. By changing the PDO, such a recommender generates different
questions and/ or their order. Hence, an automated adaptation of the recommendation
process can be realised by automatically evolving the PDO?3. The high cost of the
manual adaptation of the recommendation process and the underlying PDO can
herewith be minimised.

This research proposes a completely automated OWL PDO evolution (without a
human inspection) based on given user feedbacks* and enhancing an existing
ontology evolution concept. Its manual activities are eliminated by formulating an
adaptation strategy for the conceptual aspects of an automated PDO evolution and
establishing a feedback cycle. Automatically evolving the PDO is more efficient and
less expensive than manually doing it. The present research tackles an automated
process for the first time (to the best knowledge of the author).

2. Related work

Previous approaches to the topic of this research can be found in concepts for
ontology evolution like formulated frameworks for ontology evolution, e.g. [Haase, P.
et al. 2005], [Klein, M. and Noy N. F. 2003], [Konstantinidis, G. et al. 2007], [Noy,
N. F. et al. 2006], [Stojanovic, L. et al. 2002], [Stojanovic, N. et al. 2003], [Zablith, F.
2009]. Due to the specific challenges of the present research like the automated
ontology evolution process, none of the identified frameworks can be completely used
as basis, e.g. all of the frameworks include a step for the human inspection of the
ontology changes before they are executed. The closest work to the research in this
paper is [Stojanovic, L. et al. 2002] — in the six phase evolution process, two steps
include manual activities, namely (i) “Implementation” in which the implications of
an ontology change are presented to the user and have to be approved by her before
execution, and (ii) “Validation” in which performed changes can get manually
validated. This research aims at eliminating both manual steps in [Stojanovic, L. et al.
2002] with the adaptation strategy and its implementation. To automate (i), the
ontology evolution is conceptualised and implemented as a complete feedback cycle
[Bennett, K. H. and Rajlich, V. T. 2000]. An insufficient ontology change is indicated
by decreased metrics and gets revised according to the evolution strategy chosen.
Hence, the ontology changes do not have to get manually approved before execution.
To automate (ii), the PDO changes are predefined and application-oriented. Hence,
only valid changes are executed, and nobody has to manually validate them. This
approach is addressed with the adaptation strategy and its implementation as a new
adaptation layer consisting of two components [Broy, M. et al. 2009].

3 Ontology evolution is defined as the timely adaptation of a PDO by preserving its consistency
(a PDO is consistent if and only if it preserves the OWL DL constraints); this definition is
derived from [Haase, P. and Stojanovic, L. 2005] and [Suérez-Figueroa, M. C. and G6mez-
Pérez, A. 2008]

4 In order to focus this research on developing an automated ontology evolution, the feedback is
assumed to be given

Automated Ontology Evolution for an E-Commerce Recommender 3

3. Adaptation strategy

The adaptation strategy addresses when a change has to be executed and how the
changes will be executed in the PDO by evaluating the impact of the evolution in the
precedent feedback cycle. The first question defines the (temporal and causal) trigger
initiating the PDO change. This is addressed with the feedback transformation
strategy (confer section 3.1) which is implemented in the Feedback Transformer.

The second question defines the changing of the PDO with annotated instances (i.e.
products). This is evolving the PDO and will be addressed with the PDO evolution
strategy (confer section 3.2) which is implemented in the Adaptation Manager.

By following the principles of adaptive systems [Broy, M. et al. 2009], the
strategies are implemented in a new adaptation layer (confer figure 1) consisting of
components in which the user feedback gets transformed (i.e. Feedback Transformer)
and the respective actions are decided and initiated (i.e. Adaptation Manager).

New Adaptatio Layer 4

Fig. 1. Evolution cycle with a new adaptation layer

3.1 Feedback transformation strategy

The feedback transformation strategy defines when the PDO change. It transforms
different kinds of user feedback (e.g. implicit, explicit) into ontology input (i.e.
calculating Success Trends ST). This strategy is implemented in the Feedback
Transformer where the user feedback channels and the PDO affected by the feedback
reported are identified, the feedback is analysed and gathered, and eventually
transformed.

The strategy comprises the following steps:

1. Identify the user feedback channels

2. Analyse and gather the user feedback

3. Transform the user feedback

Ad 1. Identify the user feedback channels

4 Elmar P. Wach

In this step the application setup is analysed with regard to the available user
feedback. In order to focus this research on developing an automated PDO evolution,
the feedback is assumed to be given, and thus extracting the information is out of
scope. The application can provide two kinds of user feedback to get a complete view
of the user: Internal data sources from the application layer like the KPI® or statistical
evaluations of the usage. As the application is based on PDO, PDO changes influence
the application behaviour, and KPI and statistical evaluations of the usage of the
application layer are a valid feedback for the impact of the PDO evolution.

The application setup can also provide external data sources like data and
information extractions from the Web, databases, or ontologies. E.g., discussions in
Blogs and portals, official and unofficial product and product feature ratings, and
appearances of new features and product aspects are valuable PDO information.

The two kinds of user feedback are delivered via different feedback channels that
have to be identified and analysed with regard to the feedback representation, its
accessibility, and the PDO affected. As the PDO is the backbone of a semantic
application, the feedback is assumed to be RDF data. In case it is not, it is
recommended to convert it to RDF®. A crucial aspect is the accessibility of the user
feedback — can it be programmatically retrieved by the Feedback Transformer, e.g.
via an API or from a SPARQL endpoint?

Ad 2. Analyse and gather the user feedback

In this step the user feedback channels and the feedback delivered are analysed with
regard to the feedback content, structure, and meaning. In case the feedback is in
RDF, e.g. it can be dynamically queried with SPARQL SELECT statements.” In order
to adequately interpret the feedback, the metrics delivered have to be identified as
well as their meaning have to be clear. Generally, there can be two types of feedback:
Explicit user feedback could be provided by answering questions about the user
satisfaction with the application. As this effort cannot be expected from a user, an
alternative is to extract feedback from the Web that could also deliver new
information and aspects about the products offered. Implicit user feedback is given by
the user as a side-effect of the usage behaviour, e.g. by clicking on the product
recommended.

Currently, two feedback channels with two types of feedbacks are defined:

— Implicit feedback channel (user feedback derived from user interactions in the
application layer) “KPI trend”: The implicit feedback mainly evaluates the
success/ usage/ usability of the e-commerce recommender; it is PDO-based

— Explicit feedback channel (user feedback extracted from the Web) “Feature
relevance”: The explicit feedback gathers information about products based on
PDO extractions and is represented as an annotation property; it is PDO- and
property-based

The RDF of the KPI trend feedback includes a value indicating a positive or negative
trend of the defined KPI between two PDO versions (i.e. relating the currently

3 Key Performance Indicator, e.g. click-out rate (i.e. clicks-to-recommendations ratio)
¢ Generating the RDF data is out of scope
7 Due to space limitations, SPARQL statements are omitted

Automated Ontology Evolution for an E-Commerce Recommender 5

evaluated feedback to the precedent one based on the previous changes). It is defined
as KPI(t) with the range [-1...c]. In rare cases, the value can calculatory be larger
than +1. This feedback repository is queried with SPARQL SELECT statements to
retrieve the KPI for each latest PDO version that represent a valid PDO version test.

The RDF of the feature relevance feedback includes the property (i.e. feature
name) and its relevance, e.g. based on the count of appearances in the Web over a
period of time. It is defined as Feat(t) with the range [0...+100]. After having
retrieved feedback from the first feedback channel, this feedback repository is queried
with SPARQL SELECT statements to retrieve the relevance for each latest PDO
version to be changed.

Ad 3. Transform the user feedback

In this step the different types of feedback are transformed to ontology input, and thus
a PDO change is requested. The impact of the change is measured by calculating
adequate metrics for the new user feedback from the application layer and external
data sources reported to the adaptation layer and for each feedback channel, defined
as Success Trends ST, e.g. with an algorithm, formula, or transformation. In case the
feedback includes information extracted from the PDO, the transformed feedback has
to be in the same representation as before (e.g. ontological entity, range).

In case several feedback channels deliver analogue feedbacks, the respective
channels have to be weighted separately. The channel weight is a factor that expresses
the relative importance of either feedback channel for the PDO evolution. It can be
changed between two feedback cycles, though it is recommended to observe the
quality of the feedbacks over time before tuning it. The weights for the corresponding
analogue feedback channels sum up to 100%. Additionally, the ST calculation can
respect the certainty of a feedback channel. The certainty expresses the probability of
the correctness of the reported feedback as a percentage value.

The KPI trend KPI(t) is converted by a simple value transformation to the ST with
the range [-1...+1] relating the currently transformed feedback to the precedent one.
In the rare case of a KPI value larger than +1, it will be normalised to +1.

The feature relevance Feat(t) is converted by calculating the new relevance of the
properties with the relative frequencies of the properties in the feature relevance
feedback. The ST with the range [0...+100] is calculated by determining classes
correlated to that range and based on the interval of the relative frequencies of the
properties. To the classes the corresponding properties (i.e. the relative frequency of
the property in the feature relevance feedback is within the bounds of the respective
class) as well as the respective relevance are assigned. The new relevance is
represented as before (i.e. as an annotation property).

After having transformed the different feedback types, the calculated ST are
reported to the next component, i.e. the Adaptation Manager.

3.2 PDO evolution strategy
The PDO evolution strategy defines how the PDO change. It associates an evolution

action to the ST and ensures a consistent new PDO version. This strategy is
implemented in the Adaptation Manager where the structure of the respective PDO

6 Elmar P. Wach

gets queried with SPARQL SELECT statements and the PDO changes are executed
with SPARQL CONSTRUCT rules or programmatically according to an evolution
heuristic and predefined evolution strategies. Alternatively, a statistical analysis of the
user feedback and its history can be conducted.

The strategy comprises the following steps:

4. Define the representation of PDO changes

5. Define the analysis of the transformed feedback

6. Ensure a consistent ontology evolution and versioning

Ad 4. Define the representation of PDO changes

In this step options for the representation of PDO changes are defined, e.g. reusing an
existing representation. The change representation defines the possible and allowed
PDO changes.

For deciding whether an existing representation of ontology changes should be
reused, adequate evolution criteria have to be defined. An existing representation has
to be investigated with regard to the PDO representation language (e.g. OWL 1, OWL
2) and the PDO changes (e.g. switching a specific individual, switching the range of a
specific property) offered — they have to constitute the types of PDO changes® needed
by the application and to be executed and evaluated in the next feedback cycle, i.e.
PDO evolution cycle. In case the application utilises a specific PDO representation,
this is the preferred basis for the representation of its changes as well — in this
research the PDO are based on GoodRelations®. In case the necessary evolution
criteria are not met by an existing or application-oriented representation, a customised
one has to be developed, e.g. a specific ontology of changes.

As the PDO model the knowledge queried by the user, it is helpful to describe
probable user scenarios to predefine the types of PDO changes needed.

Ad 5. Define the analysis of the transformed feedback

In this step options for the analysis of the transformed feedback are defined, e.g.
statistical means or utilising a heuristic, and the adequate PDO evolution is decided.
The impact of the PDO change is measured in the Feedback Transformer by
calculating the ST for the new user feedback from the application layer and external
data sources reported to the adaptation layer and for each feedback channel. The ST
can be analysed by statistical means. The method as well as the relevant metrics has
to be defined and the calculations formulated. By programmatically calculating the
relevant metrics, a complete automation of the analysis as well as the derived
evolution actions can be achieved.

Another option is to formulate and utilise a heuristic that defines the PDO change
to be executed. A heuristic is a strategy that uses accessible and loosely applicable
information to solve a problem of a human being or a machine [Pearl, J. 1983] and
leads to a solution of a complex problem with simplified conceptual aspects or
reduced computation power. [Glover, F. W. 1986] mentioned first the term
metaheuristic for a computational method that makes few or no assumptions about the

8 Currently defined are switching individuals, switching datatype property ranges, switching
annotation properties label and comment, and changing annotation property priority

® www.purl.org/goodrelations

Automated Ontology Evolution for an E-Commerce Recommender 7

problem being optimised and introduced the tabu search metaheuristic [Glover, F. W.
and Laguna, M. 1997] which is utilised in this research with the philosophy that the
highest precedent ST (“greedy”) defines the next PDO change to always choose the
best evolution.

The relevant characteristics of the heuristic have initially to be defined (confer
section 4.). This manual effort is rewarded with a greater conceptual flexibility
resulting in a more specific application-oriented evolution behaviour with regard to its
impact on the application. The relevant metrics have to be defined and the
calculations formulated.

Regardless of the analysis method chosen, the PDO evolution is decided based on
the ST. In case the feedback includes information extracted from the PDO, the
subsequent evolution (i.e. type of PDO change) is defined by implementing the ST in
the same representation as before (e.g. ontological entity, range), and neither
statistical means nor a heuristic has to be applied.

In case a heuristic is chosen, this research proposes to additionally formulate
evolution strategies that decide the general evolution behaviour (e.g. executing the
same type of PDO change or a rollback) by correlating the types of PDO changes
needed to the ST calculated. Additionally, the path for determining the initial ST has
to be defined, e.g. the order of the different types of PDO changes and for which PDO
they are executed (i.e. ramp-up of the evolution strategies). The philosophy should be
that the development (and its strength) of the precedent ST defines the next type of
PDO change to distinguish different evolution impacts.

The predefined evolution strategies summarised in table 1 are considered as basic
categories. They can be fine-tuned with regard to the associated types of PDO
changes as well as the threshold defining the trend significance.

Table 1. Evolution strategy, Success Trend ST, and associated type of PDO change

Decision

Evolution Strategy Criteria

Type of PDO Change

Risky Evolution

(“always evolve differently”) -1<ST<1 Different than before

0,2*<ST<1 Same as before
0<ST<0,2* Different than before
-1<ST<0 Different than before or Rollback

Progressive Evolution
(“learn from the past”)

Safe Evolution 0<ST<1 None
(“only revert negative trends”) -1<ST<0 Rollback
Rollback

’ Manuall Rollback
(“undo the ontology changes”) y
* Threshold trend significance: Increase of the ST by 20 basis points between the precedent
and the current feedback cycle

Each evolution strategy besides Rollback ensures an adaptive change of the PDO. By
selecting a strategy in the administration interface, the business manager decides how
fundamental the evolution will be.

Ad 6. Ensure a consistent ontology evolution and versioning

8 Elmar P. Wach

After having chosen the PDO changes to be executed, the PDO has to evolve
depending on rules and by retaining its consistency to eventually provide its
knowledge to the application layer. This is done by executing SPARQL
CONSTRUCT rules or programmatically. Due to space limitations, the rules are
omitted.

When evolving the PDO, it has to be clear how the PDO has been evolved over
time, i.e. the different PDO evolutions have to be versioned. By versioning a PDO, its
changes get documented, and the historical path of evolution gets traceable. In the
context of this research this is of paramount importance for deciding the next PDO
change to be executed and reverting the changes executed in the precedent feedback
cycle, i.e. a rollback.

The preferred concept of ontology versioning is change-based versioning (i.e. each
state gets its own version number and additionally stores information about the
changes made), because it facilitates change detection, integration, conflict
management [Midche, A. et al. 2003], and it allows the interpretation how PDO
changes influence the metrics. A change-based versioning can be best realised by
tracking the PDO changes in a semantic log [Médche, A. et al. 2002].

4. Evaluation and Validation

The adaptation strategy has been validated/ “instantiated” by applying it to the use
case which is a real-world conversational content-based e-commerce recommender
system based on PDO that semantically describe the products offered in e-commerce
applications according to GoodRelations. Implicit user feedback is derived from user
interactions in the application layer and gathered by unobtrusively monitoring user
needs. Explicit user feedback is gathered by extracting information from various
websites. Both feedback channels deliver RDF data via separate SPARQL endpoints
programmatically accessible. Four types of PDO changes are defined, i.e. switching
individuals, switching datatype property ranges, switching annotation properties label
and comment, and changing annotation property priority.

Applying the adaptation strategy could be done quite smoothly. Only minor aspects
of the strategy were clarified, restructured, and reformulated. After having applied the
strategy, the use case was concisely described and conceived by the ontology
engineer. Moreover, the result formed the basis of the technical specification and thus
the development of the adaptation layer.

Due to space limitations the “instantiation” of the adaptation strategy is not
completely elaborated in this paper. In the following the evolution heuristic based on
tabu search is introduced in extracts (excluding its ramp-up, for instance). The
“taboos” are defined as follows:

— General tabu criterion gt:

e To avoid an uniform optimisation and cycles, the PDO changes within the same
type of PDO change are consecutively executed only as often as there are
different types 7 of PDO changes not induced by a feedback based on a PDO
extraction

Automated Ontology Evolution for an E-Commerce Recommender 9

e Exception: In case a type of PDO change has less than 7 PDO changes, the
general tabu criterion is met when all PDO changes within the respective type of
PDO change have been executed

e The general tabu criterion gt is calculated by multiplying the two specific tabu
criteria defined below; result is the number of allowed PDO changes gt; the
PDO changes are sequentially executed and added to the tabu list

e After the ramp-up phase and in case the general tabu criterion gt or 7 is met, the
PDO change with the highest ST in another type of PDO change is going to be
executed and ST(t+1) calculated

— Specific tabu criteria (specifically calculated for each type of PDO change):

e “Allowed number of horizontal switches” sw: With sw one (set of) ontological
entity of a PDO within the same type of PDO change is switched, e.g. a PDO
change of one (set of) property or (set of) individual — most of times there is
only one switch possible like changing the individual, the property range, or the
annotation properties label and comment, and the next change would be
reverting that change. This tabu is defined as follows:

0,case:p=1Acp=0

2+ cﬁf /2 -cpy, case: p=1A cp= 2%k, ¢, k€ N\ {0}

sw= 1\ l+cu*(cp-1)/2,case:p=1Acp=2%-1,k€N\{0} @

1+p*/2-p,case:p>1Ap=2%, peN\{0,1}, k€ N\{0}

p*(p- D2 case:p>1 Ap=2%-1,peN\{0,1}, k€ N\ {0}

(cpix being the number of fixed candidates within a type of PDO change (i.e. to
these candidates can be switched), p being the number of pools of sets of entities
(e.g. each source for the properties is a pool like string ranges, Boolean ranges,
DBpedia, or WordNet; p can be changed for each type of PDO change in the

10

Elmar P. Wach

administration interface); a pool p can be switched on the level of ontological
entity (s*) or completely (s), i.e. all sets of ontological entities are switched at
once (can be changed for each type of PDO change in the administration
interface, in case of more than one data pool p), k being a natural number to
indicate aneven (¢ =2 *k,p=2*k)orodd (cp=2%k-1,p=2%k-1)
number of fixed candidates or pools: The case for the even cj, or p equates to an
Eulerian trail, the case for the odd ¢y, or p to an Eulerian circuit)

Result is the number of allowed switches sw. In case s is already connected to
Cir (€.8. 5 - e = 1), the second and third case in (1) are lessen by this one
“impossible” switch (i.e. swgx = sw - 1). In case sw is met, the PDO change with
the second highest ST within the same type of PDO change is going to be
executed and ST(t+1) calculated.

e “Allowed number of vertical PDO change iterations” ch: With ch successive sw

switches within the same type of PDO change are executed, i.e. the next (sets
of) ontological entities are going to be switched. This tabu is defined as follows:

(s - chgx) / m; case: p=1,n € N\ {0}, s, chg € N, 5 > chgy

(2)
ch= { s’/n,case: p>1As’ Cs(ie. single sets),n € N\ {0},s" €N

Not applicable, case: p > 1 A's’ = s (i.e. all sets at once)

ch is truncated to the natural number.

(s being all sets of ontological entities within a type of PDO change (e.g. all sets
of individuals, all sets of properties, all sets of annotation properties label and
comment), s’ being a single set of ontological entities within a type of PDO
change (e.g. specific properties) to be switched to another pool, n being the
fraction of the sets of entities within a type of PDO change allowed to be
switched (e.g. n = 1: All sets of entities, n = 2: Half of the sets, etc.; n can be
changed for each type of PDO change in the administration interface))

Result is the number of allowed PDO change iterations ch. Analogous to the
case distinction of the horizontal switches sw and swgy, ch is splitted in the first
case in (2) into s is not connected to ¢z, before switching (ch), and s is already
connected to ¢y, before switching (chg,).

Automated Ontology Evolution for an E-Commerce Recommender 11

— In case another type of PDO change is executed, the oldest tabu of the precedent
type of PDO change is deleted from the tabu list

In addition to this validation, the adaptation strategy is going to be evaluated by
conducting an experiment with approximately thirty ontology experts who analyse
and formulate ontology evolution characteristics. These are then aligned with the
adaptation strategy and adopted accordingly where applicable.

The adaptation layer is going to be evaluated by conducting an experiment with
approximately thirty ontology experts who evaluate the ontology evolution. The
automatically evolved PDO is going to be compared with a manually evolved one by
setting up and evaluating an experiment with ontology experts who analyse the
feedbacks delivered and decide the PDO changes to be executed. Eventually, the PDO
resulted from this manual evolution is compared with the automatically evolved one
regarding the evaluation criteria consistency, completeness, conciseness,
expandability, and sensitiveness [Gomez-Pérez, A. 2001].

The adaptation layer is going to be validated by programming the layer and
measuring the effects in the e-commerce recommender system. Its success is defined
by the click-out rate (i.e. clicks-to-recommendations) that measures the impact of the
PDO evolution induced by the implicit and explicit user feedback.

The intended results are a highly adaptive system and eventually better
recommendations given to the customer leading to an increase of the defined KPL
The expected business impacts are a higher customer satisfaction and loyalty and
eventually increased revenue for the provider of the e-commerce application (and the
recommender system).

5. Conclusion

The need for automatically updating and evolving ontologies is urging in today’s
usage scenarios. The present research tackles an automated process for the first time
(to the best knowledge of the author). The reason for that can be found in the ontology
definition “formal, explicit specification of a shared conceptualisation” [Gruber, T. R.
1993]. “Shared” means the knowledge contained in an ontology is consensual, i.e. it
has been accepted by a group of people. Entailed from that, one can argue that by
processing feedback in an ontology and evolving it, it is no longer a shared
conceptualisation but an application-specific data model. On the other hand, it is still
shared by the group of people who are using the application. It may even be argued
that the ontology has been optimised for the usage of that group (in a specific context
or application) and thus is a new way of interpreting ontologies: They can also be a
specifically tailored and usage-based knowledge representation derived from an initial
ontology — an ontology view, preserving most of the advantages like the support of
automatically processing information. Thus, this changed way of conceiving
ontologies could facilitate the adoption and spread of using this powerful
representation mechanism in the real world, as it is easier to accomplish consensus
within a smaller group of people than a larger one.

12 Elmar P. Wach

In this research the PDO are based on GoodRelations and evolve within that upper
ontology. This ontology as well as the “subsumed” PDO conforms to the ontology
definition by [Gruber, T. R. 1993]. The PDO are application-specific and evolve
according to the needs of their users. Hence, they offer the advantages of both worlds.

6. References

[Bennett, K. H. and Rajlich, V. T. 2000] Software maintenance and evolution: A roadmap,
Proceedings of the Conference on the Future of Software Engineering, pp. 73-87.

[Broy, M. et al. 2009] Formalizing the notion of adaptive system behavior, Proceedings of the
2009 ACM Symposium on Applied Computing (SAC "09), pp. 1029-1033.

[Glover, F. 1986] Future paths for integer programming and links to artificial intelligence,
Comput. Oper. Res., Volume 13, pp. 533-549.

[Glover, F. and Laguna, M. 1997] Tabu Search, Kluwer Academic Publishers.

[G6émez-Pérez, A. 2001] Evaluation of ontologies, International Journal of Intelligent Systems,
Volume 16, pp. 391-409.

[Gruber, T. R. 1993] Toward principles for the design of ontologies used for knowledge
sharing, Formal ontology in conceptual analysis and knowledge representation, Kluwer
Academic Publishers.

[Haase, P. and Stojanovic, L. 2005] Consistent evolution of OWL ontologies, Proceedings of
the 2" European Semantic Web Conference (ESWC 2005), pp. 182 - 197.

[Haase, P. et al. 2005] A framework for handling inconsistency in changing ontologies,
Proceedings of the 2005 International Semantic Web Conference (ISWCO0S5), pp. 353-367.
[Klein, M. and Noy N. F. 2003] A component-based framework for ontology evolution,

Proceedings of the IICAI-03 Workshop on Ontologies and Distributed Systems.

[Konstantinidis, G. et al. 2007] Ontology evolution: A framework and its application to RDF,
Proceedings of the Joint ODBIS & SWDB Workshop on Semantic Web, Ontologies,
Databases.

[Médche, A. et al. 2002] Managing multiple ontologies and ontology evolution in Ontologging,
Proceedings of the IFIP 17" World Computer Congress — TCI12 Stream on Intelligent
Information Processing, pp. 51-63.

[Midche, A. et al. 2003] Managing multiple and distributed Ontologies on the Semantic Web,
The VLDB Journal — The International Journal on Very Large Data Bases, Volume 12,
Issue 4, pp. 286-302.

[Noy, N. F. et al. 2006] A framework for ontology evolution in collaborative environments,
Proceedings of the 2005 International Semantic Web Conference (ISWCO05), pp. 544-558.
[Pearl, J. 1983] Heuristics: Intelligent search strategies for computer problem solving,

Addison-Wesley.

[Stojanovic, L. et al. 2002] User-driven ontology evolution management, Proceedings of the
13™ International Conference on Knowledge Engineering and Knowledge Management
(EKAW °02), pp. 285-300.

[Stojanovic, N. et al. 2003] The OntoManager — a system for the usage-based ontology
management, LNCS 2888, pp. 858-875.

[Sudrez-Figueroa, M. C. and Gémez-Pérez, A. 2008] Towards a glossary of activities in the
ontology engineering field, Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC "08).

[Zablith, F. 2009] Evolva: A comprehensive approach to ontology evolution, Proceedings of
the 6™ European Semantic Web Conference (ESWC 2009).

